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The Lorenz Equations

The Lorenz model is based on a (gross) simplification of the fundamental Navier—
Stokes equations for fluids. As shown in Appendix C, the fluid motion and
resulting temperature differences can be expressed in terms of three variables,
conventionally called X(¢), Y(¢), and Z(z). |

3 Riproducono la dinamica delle Celle
X =pY-X) Convettive di Rayleigh-Bénard
,‘, ==XZ+rX -Y generate dalla differenza di temperatura tra
la superficie inferiore e quella superiore del
Z=XY-bZ recipiente contenente il fluido

Si veda anche:
https://www.youtube.com/watch?v=gSTNxS96fRg
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The Lorenz Eguaa'ons

The Lorenz model is based on a (gross) simplification of the fundamental Navier—
Stokes equations for fluids. As shown in Appendix C, the fluild motion and

resulting temperature differences can be expressed in terms of three vanabl&s,
conventionally called X(¢), Y(¢), and Z(z).

Significato delle 3 variabili:

A p(Y Z X) X(t): dipendenza temporale
Fa, ) della funzione di flusso del

Y==XZ+rX -Y fluido (le cui derivate rispetto

Z=XY-bZ alle variabili spaziali

rappresentano le componenti
della velocita del fluido)

Y(t): dipendenza temporale
della differenza di
temperatura tra la parte
ascendente e quella
discendente del fluido

Z(t): dipendenza temporale
della deviazione dalla
linearita della temperatura

in funzione della posizione
verticale




The Lorenz Equations

The Lorenz model is based on a (gross) simplification of the fundamental Navier-
Stokes equations for fluids. As shown in Appcndix C, the fluid motion and

resulting temperature differences can be expressed in terms of three vanabl%,
conventionally called X(1), ¥(1), and Z(1).

Significato delle 3 variabili:

X(t): dipendenza temporale
della funzione di flusso del
fluido (le cui derivate rispetto
alle variabili spaziali
rappresentano le componenti
della velocita del fluido)

Y(t): dipendenza temporale
della differenza di
temperatura tra la parte
ascendente e quella
discendente del fluido

Zona di convergenza mtertrbplcale
(basso pressione)

Z(t): dipendenza temporale
della deviazione dalla
linearita della temperatura

in funzione della posizione
verticale




Significato dei 3 parametri
di controllo:

Prandtl number p:

rapporto tra la viscosita cinetica
del fluido e il coefficiente di
diffusione termica

Rayleigh number r:
misura della differenza di
temperatura tra la parte

superiore e quella inferiore del
fluido

Parameter b:

esprime il rapporto tra l'altezza
verticale dello strato di fluido e la
dimenzione orizzontale delle
celle convettive

Tt‘

SIS,

T,

p, r, and b are adjustable parameters{ p Js the so-called Prandtl number, which is
defined to be the ratio of the kinetic viscosity of the fluid to its thermal diffusion
coefficient. In rough terms, the Prandtl number compares the rate of energy loss
from a small “packet™ of fluid due to viscosity ér)riction) to the rate of energy loss

from the packet due to thermal conduction. s proportional to the Rayleigh
number, which is a dimensionless measure of the temperature difference between
the bottom and top of the fluid layer. As the temperature difference increases, the
Rayleigh number increases. The final parametet b Jis related to the ratio of the
vertical height h of the fluid layer to the horizontal size of the convection rolls. It
turns out that for [b = 8/3] the convection begins for the smallest value of the
Rayleigh number, that is, for the smallest value of the temperature difference ST.

This is the value usually chosen for the study of the Lorenz model. p is then chosen
for the particular fluid under study. Lorenz (LOR63) used the value|p = 10 [which
corresponds roughly to cold water), a value that had been used in a previous study
of Rayleigh-Bénard convection by Saltzman (SAL62). We let r, the Rayleigh
number, be the adjustable control parameter.

The Lorenz model, although based on what appears to be a very simple set of
differential equations, exhibits very complex behavior. The equations look so
simple that one is led to guess that it would be easy to write down their solutions,
that is, to give X, Y, and Z as functions of time. In fact, as we shall discuss later, it
is now believed that it is in principle impossible to give the solutions in analytic
form, that is, to write down a formula that would give X, Y, and Z for any instant of
time. Thus, we must solve the equations numerically, which, in practice, means
that a computer does the numerical integration for us. Here, we will describe just a
few results of such an integration. The analytic underpinnings for these results will
be discussed later.




Significato dei 3 parametri
di controllo:

Prandtl number p:

rapporto tra la viscosita cinetica
del fluido e il coefficiente di
diffusione termica (p = 10)

Rayleigh number r:

misura della differenza di
temperatura tra la parte
superiore e quella inferiore del
fluido (r = variabile)

Parameter b:

esprime il rapporto tra l'altezza
verticale dello strato di fluido e la
dimenzione orizzontale delle
celle convettive (b = 8/3)

Tt‘

SIS,

T,

p, r, and b are adjustable parameters{ p Js the so-called Prandtl number, which is
defined to be the ratio of the kinetic viscosity of the fluid to its thermal diffusion
coefficient. In rough terms, the Prandtl number compares the rate of energy loss
from a small “packet™ of fluid due to viscosity éf)riction) to the rate of energy loss

from the packet due to thermal conduction. s proportional to the Rayleigh
number, which is a dimensionless measure of the temperature difference between
the bottom and top of the fluid layer. As the temperature difference increases, the
Rayleigh number increases. The final parametet b Jis related to the ratio of the
vertical height h of the fluid layer to the horizontal size of the convection rolls. It
turns out that for [b = 8/3] the convection begins for the smallest value of the
Rayleigh number, that is, for the smallest value of the temperature difference ST.

This is the value usually chosen for the study of the Lorenz model. p is then chosen
for the particular fluid under study. Lorenz (LOR63) used the value|p = 10 [which
corresponds roughly to cold water), a value that had been used in a previous study
of Rayleigh-Bénard convection by Saltzman (SAL62). We let r, the Rayleigh
number, be the adjustable control parameter.

The Lorenz model, although based on what appears to be a very simple set of
differential equations, exhibits very complex behavior. The equations look so
simple that one is led to guess that it would be easy to write down their solutions,
that is, to give X, Y, and Z as functions of time. In fact, as we shall discuss later, it
is now believed that it is in principle impossible to give the solutions in analytic
form, that is, to write down a formula that would give X, Y, and Z for any instant of
time. Thus, we must solve the equations numerically, which, in practice, means
that a computer does the numerical integration for us. Here, we will describe just a
few results of such an integration. The analytic underpinnings for these results will
be discussed later.




STATO NON
CONVETTIVO

r<l1

Behavior of Solutions to the Lorenz Equations

For small values of the parameter r, that is, for small temperature differences o7, -
the model predicts that the stationary, nonconvecting state is the stable condition.
In terms of the variables X, Y, and Z, this state is described by the values X =0, ¥ =
0, and Z = 0. For values of r just greater than 1, steady convection sets in. There
are two possible convective states: one corresponding to clockwise rotation, the
other to counterclockwise for a given convective roll. As we shall see, some initial

conditions lead to one state, other conditions to the other state. Lord Rayleigh ~
showed that if p > b + 1, then this steady convection is unstable for large enough r
and gives way to more complex behavior. As r increases, the behavior has regions
of chaotic behavior intermixed with regions of periodicity and regions of
“intermittency,” which cycle back and forth, apparently randomly, between chaotic
and periodic behavior.

" To illustrate some of this behavior, let us start our examination of the Lorenz
model by looking at the behavior of the system for values of r less than 1.

Rayleigh's analysis predicts that the system should settle into the steady,
nonconvective state indicated by X =0, Y =0, Z = 0. Figure 1.17 shows the results
of a numerical integration of the Lorenz equations starting from the initial state X =
0, Y=1, Z = 0; that is, we have started the system with a small amount of
circulation and slight temperature deviations. As time goes on, however, the
system relaxes to the steady nonconvective state at X =0, Y=0,Z=0.

7
/

r<li

r>1



STATO NON
CONVETTIVO

r<l1

X=0: la funzione di
flusso del fluido & nulla

Y=0: non c’eé differenza di
temperatura tra la parte
ascendente e quella
discendente del fluido

Z2=0: non c’e deviazione dalla 2 2
x=2‘/;\lr—1, y=2\/g\/r—1 , 3=r=-1

linearita della temperatura
in funzione della posizione

verticale

Behavior of Solutions to the Lorenz Equations

For small values of the parameter r, that is, for small temperature differences o7, -
the model predicts that the stationary, nonconvecting state is the stable condition. | r<1
In terms of the variables X, Y, and Z, this state is described by the values X =0, ¥ =
0, and Z = 0. For values of r just greater than 1, steady convection sets in. There [~
are two possible convective states: one corresponding to clockwise rotation, the
other to counterclockwise for a given convective roll. As we shall see, some initial
conditions lead to one state, other conditions to the other state. Lord Rayleigh ™
showed that if p > b + 1, then this steady convection is unstable for large enough r
and gives way to more complex behavior. As r increases, the behavior has regions
of chaotic behavior intermixed with regions of periodicity and regions of
“intermittency,” which cycle back and forth, apparently randomly, between chaotic
and periodic behavior.
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4.5 Fixed Points in Three Dimensions (dim = 0)

The fixed points of the system of Egs. (4.4-1) are found, of course, by setting the
three time derivatives equal to 0. [Two-dimensional forced systems, even if written
in the three-dimensional form (4.4-4), do not have any fixed points because, as the
last of Eqgs. (4.4-4) shows, we never have x; =¢=0 . Thus, we will need other
techniques to deal with them.] The nature of each of the fixed points is determined
by the three characteristic values of the Jacobian matrix of partial derivatives
evaluated at the fixed point in question. The Jacobian matrix is

(o o o)
dx, OJx, Ox,
% % % :
J 5 e 4.5-1)
of, 9 I
| dx, Odx, Ox )

In finding the characteristic values of this matrix, we will generally have a cubic
equation, whose roots will be the three characteristic values labeled A,,4,,4; .




4.5 Fixed Points in Three Dimensions (dim = 0)

The fixed points of the system of Egs. (4.4-1) are found, of course, by setting the
three time derivatives equal to 0. [Two-dimensional forced systems, even if written
in the three-dimensional form (4.4-4), do not have any fixed points because, as the
last of Eqgs. (4.4-4) shows, we never have x; =¢=0 . Thus, we will need other
techniques to deal with them.] The nature of each of the fixed points is determined
by the three characteristic values of the Jacobian matrix of partial derivatives
evaluated at the fixed point in question. The Jacobian matrix is

Jacobiano del
modello di Lorenz, -p p 0
dacalcolarein J=|r_7 -1 -X (4.5-1)
corrispondenza di
ciascun punto fisso Y Xx -b

In finding the characteristic values of this matrix, we will generally have a cubic
equation, whose roots will be the three characteristic values labeled A,,4,,4; .
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[ €602 4-2)1,20,{yxb)} where p=10,6=8/3,r=0.5,x=0,y=0,2=0 B)

5

"

-8-D-8-9 = Examples =2 Random

r=0.5

STUDIO DELLA STABILITA’ DEL

PUNTO FISSO: Input interpretation:
-p p O 8
X_O r—-z -1 —-x \\,hcrcP:lo,b:§,r=0.5,x=0,y=0,z=0
-— y X _b
Y_O Result:

Z:O {{- 10, 10, 0}, {0.5, — 1, 0}, {0, 0, g }}

(UNICO PUNTO FISSO PER 0<r<1)
Characteristic polynomial:

I —-x? —13.6667 x* — 34.3333 x — 13.3333
Node
Eigenvalues:
A1 ~ —10.5249
8

R Az ~ —2.66667

Az = —0.475062

Eigenvectors:

vi ~ (—0.998625, 0.0524216, 0.)

vo = (0., 0., 1.)

vz & (—0.724097, —0.689698, 0.)



It will be useful to look at this behavior in two complementary graphic
presentations. One graph plots the variables X, Y, and Z as functions of time, as in
Fig. 1.17(a—c). The other graphs display the evolution of the system by following
: the motion of a point in XYZ space. Since the variables X, Y, and Z specify the state

A =AY=X) of the system for the Lorenz model, we call this space the state space for the

V=-XZ+rX-Y system. For the Lorenz model, the state space is three-dimensional. We will

Z=XY-bz usually follow the system with a two-dimensional projection, say on the XY or ZX

p=10, b=8/3  planes of this state space. As time goes on, the point in state space will follow a

path, which we shall call a trajectory. Figure 1.17(d) shows a ZX plane projection of

the trajectory in state space. From Fig. 1.17, we see that the trajectory “relaxes” to

r=0.5 the condition X = 0, Y = 0, and Z = 0 corresponding to the nonconvecting state
illustrated in Fig. 1.15.
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Fig. 1.17. In (a), (b), and (c), X, Y, and Z are plotted as functions of time for the Lorenz
model with r = 0.5, p =10, and b = 8/3. In (d), the trajectory is shown as a projection onto
the ZX plane of state space. In all cases the trajectory started at the initial point X =0, Y =1,
Z=0.
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X =pY-X)

=-XZ+rX -Y

Z=XY-bZ
p=10, b=8/3

r>1

For r values less than |, all trajectories, no matter what their initial conditions,
eventually end up approaching the fixed point at the origin of our XYZ state space.
To use the language introduced for the logistic map, we can say that for r < 1, all of
the XYZ space is the basin of attraction for the attractor at the origin.

For r > 1, we have three fixed points. The one at the origin turns out to be a
repelling fixed point in the sense that trajectories starting near it tend to move away
from it. The other two fixed points are attracting fixed points if  is not too large.
Some initial conditions give rise to trajectories that approach one of the fixed
points; other initial conditions give rise to trajectories that approach the other fixed
point. (In Chapter 4, we will see more quantitatively what is different about these
fixed points.) For r just greater than 1, the other two fixed points become the
attractors in the state space. Thus, we say that r = | is a bifurcation point for the
Lorenz model.

NASCONO GLI ALTRI DUE PUNTI FISSI REALI FUORI
DALL'ORIGINE, CHE CORRISPONDONO A STATI CONVETTIVI




X =p¥-X)
Y=-XZ+rX -Y
Z=XY-bZ

p=10, b=8/3

r=2
X=V=+8/3=1163..

& WolframAlpha

Figure 1.18 illustrates the behavior of two trajectories starting from
different initial points.
Let us describe this behavior in more physical terms. If r increases to a value
Just greater than 1 (recall that this means that we have increased the temperature
difference between the bottom and top of the fluid layer), the fixed point at the
origin becomes a repelling fixed point. This tells us that the so-called conductive
state (the state with no fluid convection) has become unstable. The slightest
deviation from the conditions X = 0, Y = 0, Z = 0 sends the state space trajectory
away from the origin. For r just greater than 1, the trajectories are attracted to one
or the other of the other two fixed points at X = Y = :t,[b(r —~1) . Those two fixed
points correspond to steady (time-independent) convection, one with clockwise
rotation, the other counterclockwise. Some initial conditions give rise to
trajectories that head toward one fixed point; other initial conditions lead to the
other fixed point. The left-hand side of Fig. 1.18 shows the YZ plane state space
projection for a trajectory starting from X =0, ¥=-1, Z=0. The right-hand side of
Fig. 1.18 shows a trajectory starting from a different set of initial values: X =0, Y =
+1, Z = 0. Note, in particular, that the system settles into a state with nonzero
values of Y and Z, that is, the fluid is circulating.

{{10(y-x)} {~xz+2x-y} {xy-(8/3)z}} '-’ Fig. 1.18. State space projections onto

Roots:

x=0, y=0, =0

f2 }2 '
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3 3 04

f2 {2
x=2_-, =2.,/-, z=1
3 4 3

the ¥Z plane for trajectories in the Lorenz
r=20 model with » = 2. Ome attractor
corresponds 1o clockwise rotation, the
other to counterclockwise rotation of the
fluid at a particular spatial location.
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= Examples =2 Random

Input interpretation:

w

-p p 0 8
r-z -1 —x|wherep=10,b=—-,r=2,x=0,y=0,2=0
y x -b

Result:

{i-10, 10, 0}, {2, -1, 0}, {0, 0, ‘g}}

Characteristic polynomial:

41x* 58x 80

3 3 3

Eigenvalues: Exact forms

A ~ —11.8443
Az ~ —2.66667

Az =~ 0.844289

Eigenvectors: Exact forms

v ~ (—-5.42214, 1., 0.)
vy & (0., 0., 1.)

va & (0.922144, 1., 0.)
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B O B == By | = Examples =2 Random
r=2
STUDIO DELLA STABILITA’ DEL
PU NTO F|SSO- Input interpretation:

= P 0 8
r—-z -1 —-x whcrcp=10,b=§,r=2,x=—1.63,y=—1.63,z=1

=-1.63... S
=-1.63...

8
z= 1 {{— 10, 10, 0}, {1, —1, 1.63}, {— 1,63, ~1.63, ~ }}

Characteristic polynomial:

I -x? —13.6667 x* — 31.9902 x — 53.138
Spiral Node
Eigenvalues:
. A~ —11.2414
-
. R Az ~ —1.21263 + 1.80458 i
Az ~ —1.21263 — 1.80458 i

Eigenvectors:

vi ~ (0.979108, —0.121548, 0.163016)

vo & (—0.370106 — 0.378644 i, —0.256897 — 0.399518 i, 0.702879 + 0.{)

va ~ (—0.370106 + 0.378644 i, —0.256897 + 0.399518 i, 0.702879 + 0.{)



#WolframAlpha Knowiedge engine

| {-Pp.0}AG-2)1,x} Ly, -b}} where p=10,b=8/3,r=2,x=1.63,y=1.63,z=1 8|

8.8 r= 2 = Examples =2 Random

STUDIO DELLA STABILITA’ DEL
PU NTO FISSO' Input interpretation:

SR B 9 8
r—-z -1 —x|wherep=10,b=—-,r=2,x=1.63,y=1.63,z2=1
X=1.63 ’ 3 '
° see y x -b
Y=1063 (X X} Result:
8
z= 1 {(—10, 16,0} (11— 1:685 {1.63, 163, - }}
Characteristic polynomial:
) [ —x* — 13.6667 x* — 31.9902 x — 53.138
Spiral Node
Eigenvalues:
L ]
o A~ —11.2414
L R Ax & —1.21263 + 1.80458 ¢
Az ~ —1.21263 — 1.80458 ¢

Eigenvectors:

vi % (0.979108, —0.121548, —0.163016)

vo & (—0.370106 — 0.378644 i, —0.256897 — 0.399518 i, —0.702879 + 0. i)

vz & (—0.370106 + 0.378644 i, —0.256897 + 0.399518 ¢, —0.702879 + 0. i)



X =p¥-X)
Y=-XZ+rX =Y
Z=XY-bZ

p=10, b=8/3

RIEPILOGO PARZIALE:
@ r <1: ununico nodo nell’'origine.

@ 1<r<13.93: un saddle point (index 1) nell’origine + due nodi a spirale simmetrici off-
origine.

Cosa succede perr > 13.93?



An interesting question to ask for any dynamical system is the following:
What region of initial conditions in XYZ space leads to trajectories that go to each
of the fixed points? In other words, what are the basins of attraction for the
attracting fixed points? How do these regions change as the parameters describing
the system change? We shall see later that these regions can be quite complicated
geometrically. In fact, in order to describe them, we need to use the relatively new

X=p¥-X
e P( ; geometrical concept of fractals. All of this, however, will be taken up in due
o SREIAPE Course. Let us continue to increase the temperature difference for our fluid layer.
L=XY=bt Nothing dramatic happens until r reaches about 13.93 where we find that
p=10, b=8/3 repelling regions develop around the off-origin fixed points. There are still small

basins of attraction surrounding the two off-origin fixed points, which give rise to

trajectories attracted to those two points. Trajectories starting outside these small
regions, however, are repelled from the vicinity of the fixed points. If we examine

the graphs of X(r), Y(#), and Z(r) shown in Fig. 1.19, then we see that the new
conditions correspond to time dependent variations in the fluid flow and the
corresponding temperature differences. The cormpondmg state space dlagram is
shown in the lower right of Fig. 1.19

20

14 circa <r < 25 circa

r=250

M Fig. 1.19. Solutions to the Lorenz equations for r = 25. The initial point was X =0, ¥ =-5, Z
=15. In the state space diagram in the lower right panel, the two off-origin fixed points at Z
S =24, X =8 and Y = 8 are indicated by asterisks.
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X =pY-X)
Y=-XZ+rX -Y
Z=XY-bZ

p=10, b=8/3

| due punti fissi off-origine
restano nodi a spirale

Spiral Node

-

I

% WolframAlpha e

{{-p.p,0}{(r-2),-1,-x}.{y:x,-b}} where p=10, b=8/3, r=14, x=sqrt(8/3)*sqrt(r-1),y=sqrt(8/3)*sqrt(r-1),z=r-1 (=]

LA L3 dd
Ik NATURAL LANGUAGE | [ MATH INPUT ] EXTENDED KEYBOARD  3:! EXAMPLES # UPLOAD >4 RANDOM

Input interpretation

-p p O .
r-z -1 -x hhp-lOb:-

b's
r_14x—\/7\/—r-_y ‘/7\/'_z_r 1

Result

0

- -zﬁ
B

Characteristic polynomial Approximate form [ [« Step-by-step solution ]

5 4122 2080
- —— e A - —

Characteristic polynomial »

Eigenvalues Exact forms | ( [# Step-by-step solution |

A ~ -12.8777
Ay ~ —0.394486 + 7.32695 i

~ —0.394486 - 7.32695 i




X =pY-X)
Y=-XZ+rX -Y
Z=XY-bZ

p=10, b=8/3

| due punti fissi off-origine
restano nodi a spirale

I
Spiral Node

®
-

d R

¥ WolframAlpha

computational
intelligence

[ {{-p,p,0},{(r-2),-1,-x}.{y,x,-b}} where p=10, b=8/3, r=24, x=sqrt(8/3)*sqrt(r-1),y=sqrt(8/3)*sqrt(r-1),z=r-1 =] ]

g NATURAL LANGUAGE I{a MATH INPUT BH EXTENDED KEYBOARD

Input interpretation

r-s -1 —x|wherep=10,b= -,

Yy x -b 3
8 8
r=24,x= 5\/"—1,_)’= 5Vr—1,z=r—1
Result
-10 10 0
1 -1 -2 %
3

o [46 5 [46  _
3 3

W |

Characteristic polynomial

5 412% 2721 3680
3 3 3

__Eigenvalues
A = -13.6216

Ay =~ =0.0225267 + 9.4896 i

A3 =~ =0.0225267 - 9.4896

Approximate form

Exact forms

i3 EXAMPLES # UPLOAD >4 RANDOM

( [ Step-by-step solution |

Characteristic polynomial »

( [# Step-by-step solution ]




- »
| 2%
. Z
DRRESE) 19
Y=-XZ+rX -Y
g 12
Z=XY-bz
S
p=10, b=8/3 20

RIEPILOGO PARZIALE:
@ r <1: ununico nodo nell’'origine.

@ 1<r<13.93: un saddle point (index 1) nell’origine + due nodi a spirale simmetrici off-
origine.

@ 13.93 <r<24.74: un saddle point (index 1) nell’'origine + due nodi a spirale simmetrici
off-origine + due cicli limite saddle (stabili all’interno, instabili all’'esterno) attorno ai due
nodi off-origine. Questi cicli limite diventano sempre piu piccoli per r 2> 24.74.



- »
o\ 2
. Z
DRRESE) 19
Y=-XZ+rX -Y
g 12
Z=XY-bz
S
p=10, b=8/3 20

RIEPILOGO PARZIALE:

r < 1: un unico nodo nell’origine.

1 <r<13.93: un saddle point (index 1) nell’origine + due nodi a spirale simmetrici off-
origine.

13.93 < r < 24.74: un saddle point (index 1) nell’'origine + due nodi a spirale simmetrici
off-origine + due cicli limite saddle (stabili all’interno, instabili all’'esterno) attorno ai due

nodi off-origine. Questi cicli limite diventano sempre piu piccoli per r > 24.74.

r>24.74: x=-8, y=-8, z=24

r=25 x=0, y=0, 2=0




STUDIO DELLA STABILITA’ DEL

PUNTO FISSO:

X=0
Y=0
Z=0

I
Saddle Point

Index 1

——

———

A\

E - —>
/' Out}set 1D

/./4

i

i‘VWﬂﬁanUﬂphammﬁﬂm

,[ {{-p,p,O},{(r-Z),-l,-X},{Y,X,-b}} where p=10,b=8/3,r=25,x=0,y=0,z=0 E]

8089 = Examples == Random
r=25

Input interpretation:

-p p 0 8
r—-z —1 —x|wherep=10,b= §,r=25,x=0,y=0,z=0
y x -=b

Result:

{{_ 10, 10, 0}, {25, -1, 0}, {0’ 0. _g}}

Characteristic polynomial:

41x* 632x

3

+ 640

Eigenvalues: Exact forms

A1 » —21.9393
Az ~ 10.9393

A3 ~ —2.66667

Eigenvectors: Exact forms

vi1 & (-0.837571, 1., 0.)
v2 % (0.477571, 1., 0.)

vs = (0., 0., 1.)



o *WolframAlpha“

l[ 4-p,p,0},{(-2),-1,-%},{y,x,-b}} where p=10,b=8/3,r=25,x=-8,y=-8,2=24 a]|

r 25 = Examples =2 Random

- O B == s B

STUDIO DELLA STABILITA’ DEL

PUNTO FISSO:

X=-8
=-8
Z=24

Input interpretation:

=P P @ 8
r—-z -1 —x|wherep=10,b= §,r=25,x=—8,_y=—8,z=24
y x -=b

Result:

{-10,10, 0}, {1, -1, 8}, {-8, -8, __:}}

Characteristic polynomial:

Splﬁ' I —-x3 = E - &( — 1280
Saddle Point 3
Index 2
L J Eigenvalues: Exact forms
. A1 = —13.6825
¢ R

=y

A2 ~ 0.00792111 +9.67213 i

A3 ~ 0.00792111 - 9.67213 i

Eigenvectors: Exact forms

In

Lset 1D v1 % (2.17963, —0.802651, 1.)
va & (—0.372223 — 0.42433 i, 0.0378997 — 0.7846851i, 1.)

va & (—0.372223 + 0.42433 ¢, 0.0378997 + 0.7846851, 1.)



#WolframAlpha‘“ Khowledge ongino

l{ {{‘p,p,O},{(r‘Z),'l,‘X},{Y,X,‘b}} where p=1olb=8/3lr=257x=81y=872=24 E]‘

25 = Examples =2 Random

&0 -8 7T

STUDIO DELLA STABILITA’ DEL
PU NTO F|SSO' Input interpretation:

X=8

Y=8 Result:
Z: 24 {{—10, 10, 0}, {1, -1, -8}, {8, 8, _g}}

-p p O 8
r—-z -1 —x|wherep=10,b= §,r=25,x=8,y=8,z=24
y x -b

Characteristic polynomial:

Splﬁ' I —-x° - ﬂ _200x 1280
Saddle Point 3
Index 2
o Eigenvalues: Exact forms
e A1 ~ —13.6825
¢ R

A2 = 0.00792111 + 9.67213 i

0 Az =& U, - Y. j
O“X'Se"l 3 ~ 0.00792111 — 9.67213 i

Eigenvectors: Exact forms

Inkset 1D " ® (-2:17963, 0.802651, 1)

vo & (0.372223 + 0.42433 i, —0.0378997 + 0.784685 i, 1.)

/ ] va ~ (0.372223 — 0.42433 i, —0.0378997 — 0.784685 i, 1.)



«| “._  ATTRATTORE DI LORENZ

X =pY-X)

=-XZ+rX -Y

Z=XY-bZ

p=10, b=8/3

RIEPILOGO PARZIALE:
@ r <1: ununico nodo nell’'origine.

@ 1<r<13.93: un saddle point (index 1) nell’origine + due nodi a spirale simmetrici off-
origine.

@ 13.93 <r<24.74: un saddle point (index 1) nell’'origine + due nodi a spirale simmetrici
off-origine + due cicli limite saddle (stabili all’interno, instabili all’'esterno) attorno ai due

nodi off-origine. Questi cicli limite diventano sempre piu piccoli per r > 24.74.

@ r> 24.74: un saddle point (index 1) nell’origine + due saddle points (index 2) a spirale
simmetrici off-origine. | due cicli limite sono ormai collassati sui due punti fissi off-

origine = NASCE UATTRATTORE CAOTICO DI LORENZ!!!



LATTRATTORE DI LORENZ POSSIEDE LE CARATTERISTICHE
DEL COMPORTAMENTO CAOTICO
As we saw in Chapter 1, chaotic behavior is characterized by the divergence
of nearby trajectories in state space. As a function of time, the “separation”
(suitably defined) between two nearby trajectories increases exponentially, at least

e for short times. The last restriction is necessary because we are concerned with
ot v i 4 systems whose trajectories stay within some bounded region of state space. The
Z=XY-bZ system does not “blow up.” There are three requirements for chaotic behavior in

p=10 b=8/3 such a situation:

1. no intersection of different trajectories;
2. bounded trajectories;
3. exponential divergence of nearby trajectories.

r>24.74




LATTRATTORE DI LORENZ POSSIEDE LE CARATTERISTICHE
DEL COMPORTAMENTO CAOTICO

Chaos, however, also appears in the behavior of a single trajectory. As the

! trajectory wanders through the (chaotic) attractor in state space, it will eventually

X =p¥Y-X) return near some point it previously visited. (Of course, it cannot return exactly to

'~ _xz+,x—y  thatpoint. If it did, then the trajectory would be periodic.) If the trajectories exhibit

7= XY -b2Z exponential divergence, then the trajectory on its second visit to a particular

neighborhood will have subsequent behavior, quite different from its behavior on

p=10, b=8/3  “ihe first visit. Thus, the impression of the time record of this behavior will be one of
nonreproducibility, nonperiodicity, in short, of chaos.

r>24.74




LATTRATTORE DI LORENZ POSSIEDE LE CARATTERISTICHE
DEL COMPORTAMENTO CAOTICO

This observation should be the cause of some reflection. Here, we have a
system for which the externally controlled “forcing”™ (that is, the imposed

X =p(¥-X) temperature difference) is independent of time. Yet the system has developed

; spontaneously a nontrivial time dependence. As we mentioned before, a nonlinear
system can break the time-translation symmetry of its fundamental equations and
external environment. (The period-2, period-4, and so on, variations of populations
p=10, b=8/3 in the logistic map model are also examples of the spontaneous breaking of time-

translation symmetry.)

=-XZ+rX -Y
Z=XY-bZ

r>24.74




X =p¥-X)
Y=-XZ+rX -Y
Z=XY-bZ

p=10, b=8/3

MA QUALE’ LA ROTTA CHE CONDUCE
ALUATTRATTORE CAOTICO DI LORENZ PER
r->24.74?

Dobbiamo guardare cosa succedeva dietro le
quinte mentre aumentavamo il valore dir...




The Routes to Chaos 1V: Chaotic Transients and Homoclinic Orbits

As an example of how homoclinic and heteroclinic connections affect
dynamics, let us return to the Lorenz model introduced in Chapter 1. This model
provides a nice example of chaotic transients due to homoclinic and heteroclinic
; connections eventually leading to chaotic behavior. A homoclinic connection is
A RRY=X) formed when the parameter{ r is near 13.93| (with b = 8/3 and p = 10, as in Chapter
Y=-XZ+rX-Y 1). At that parameter value, the one-dimensional out-set of the fixed point at the
Z=XY-bz origin, which is now a saddle point, touches, over its entire length, the two-
»=10, b=g/3  dimensional in-set of that same saddle point. Actually, a double homoclinic
Connection is formed because there are two branches of the one-dimensional out-
8¢t, one leading to one of the off-origin fixed points, the other leading to the other
off-origin fixed point. Trajectories passing near the homoclinic connections are
successively repelled by and attracted to the saddle point at the origin many times
while wandering back and forth between regions around the two off-origin fixed
points before finally settling into one of the off-origin fixed points. Such behavior

Saddle Point looks chaotic, but because it is really only transient behavior, it is called transient
Index | chaos. For more information about transient chaos, a fascinating topic in its own
(0,0,0) right, see the references at the end of this chapter.

1<r<13.93: unsaddle point (index 1) nell’'origine + due nodi a spirale simmetrici off-origine.

DOPPIA CONNESSIONE
OMOCLINICA DEL SADDLE
POINT NELLORIGINE CON

SE STESSO per r=13.93...



X =pY-X)
Y=—XZ+rX -Y
Z=XY-bZ

p=10, b=8/3

i

heterochqic
tangle

...E DOPPIA CONNESSIONE ETEROCLINICA
CON | DUE SADDLE CYCLE OFF-ORIGINE per r=24.06

Fig. 417. An illustration of heteroclinic behavior in the Lorenz model at r = 35.0. The XY
plane projection of the trajectory is shown. The trajectory starts near the saddle point at the
origin. The out-set of the origin connects to the in-set of one of the saddle cycles near the
fixed pointat X =Y =49.5.
connects to the in-set of the other saddle cycle. After orbiting near the fixed pointat X=Y =
-9.5, the trajectory heads back toward the origin on the out-set of the saddle cycle. Near the

origin, it is again repelled.

When this homoclinic connection occurs, two saddle cycles are also created.
These saddle cycles play an essential role in the development of the chaotic
attractor in the Lorenz model. As r increases beyond 13.93, the saddle cycles,
which surround the off-origin fixed points (which themselves are spiral nodes),
begin to decrease in size and contract around the spiral nodes. At r=24.74, the real
part of the complex eigenvalues of the spiral nodes goes to 0, and the saddle cycles
collapse onto the nodes. Before this, however, at r < 24.06, the out-set of the saddle
point at the origin falls outside the saddle cycles. For r > 24.06 the out-set falls
inside the saddle cycles; therefore, af r = 24.06 [approximately), the out-set of the

saddle point at the origin must intersect the saddle cycles to form a heteroclinic
connection. For r < 24.74, there are still two (small) basins of attraction near the

two spiral nodes, but trajectories starting outside these two small basins wander
chaotically due to the influence of the heteroclinic connection and resulting tangle.
In effect, a chaotic attractor has been formed by this connection. Figure 4.17 shows
how the resulting heteroclinic connections influence a trajectory that starts near the
saddle point at the origin.

r > 13.93: nascono due cicli limite saddle (instabili

all’esterno) attorno ai due nodi off-origine 40
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The trajectory then leaves that saddle cycle on its out-set which
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B

RIEPILOGO
QUASI FINALE...

r < 1: un unico nodo nell’origine.

1 <r < 13.93: un saddle point (index 1) nell’'origine + due nodi a spirale simmetrici off-
origine.

r = 13.93: doppia connessione omoclinica tra i due rami dell'out-set (1Dim) del saddle
point nell’origine e il suo stesso in-set (2Dim) — TRANSIENT CHAOS

13.93 < r < 24.74: un saddle point (index 1) nell’'origine + due nodi a spirale simmetrici off-
origine + due cicli limite saddle (stabili all’interno, instabili all’esterno) attorno ai due nodi
off-origine. Questi cicli limite diventano sempre piu piccoli per r > 24.74.

r = 24.06: i due rami dell’'out-set (1Dim) del saddle point nell’origine formano una doppia
connessione eteroclinica con gli in-set (2D) dei cicli limite saddle attorno ai due punti fissi
off-origine. Si forma ’ATTRATTORE CAOTICO di Lorenz.

r > 24.74: un saddle point (index 1) nell’'origine + due saddle points (index 2) a spirale
simmetrici off-origine. | due cicli limite sono ormai collassati sui due punti fissi off-origine.

24.74 < r < 143: comportamento CAOTICO.

Cosa succede perr > 143?



«PERIOD DOUBLING ROUTE» VERSO LATTRATTORE DI LORENZ

The time behavior in this region of r values is quite complex. So let us move
AN on to examine another region near r = 160. Figure 1.20 shows the time dependence
X = p(¥ -X) of X, Y, and Z for r = 160. The behavior is not simple harmonic (that is, it is not
sinusoidal), but it is periodic. We can understand the physical nature of the
. system’s behavior by looking at the graphs of X and Y as functions of time. We see
E .t that X oscillates symmetrically around the value X = 0. This tells us that the fluid is
p=10, b=8/3 convecting first in the clockwise direction, then counterclockwise, continually
reversing as time goes on. The temperature difference between up flow and down
flow, represented by the variable Y, also oscillates symmetrically around 0. Note
that the Z variable, on the other hand, oscillates around a nonzero value

r= 160 (approximately 160 for the case displayed in Fig. 1.20).

r=160
0 150 300
X Y
[} 800 250 z
50

o Ll 200

| 0 150 [
20 [}

|I -50 100 ||
-40 i -100 so |
60 Ly o | RB 1 1 -150 o Ligogodleg: i |

o 2 4 ¢ 6 R 10 0 2 ‘4 t 6 L} 10 (1] 2 4 ' 6 8 10

Fig. 1.20. Solutions of the Lorenz equations with r = 160. After an initial transient that lasts
until about ¢ = 3, the solutions are periodic (but not sinusoidal). The jaggedness of the
transient trajectory in the XYZ state space plot (lower right) is a graphing artifact. The
calculations were actually carried out with much smaller time steps.



X =p¥-X)
Y=-XZ+rX -Y
Z=XY-bZ

p=10, b=8/3

r= 160

r= 150

PERIOD
DOUBLING

When the Rayleigh number is decreased to about r = 150, we find that the
periodic behavior of Z suddenly changes. Figure 1.21 indicates that we now have
period-2 behavior. (Please note a complication: The fundamental period is also
slightly changed from Fig. 1.20. The Lorenz model does not have any external
periodic forcing, as did the diode circuit, to determine the fundamental period.)
The period-2 behavior is most easily recognized by looking at the largest upward
“peaks” or downward “troughs” in Fig. 121. We see that a period-doubling
bifurcation has occurred.

At r =146 , we find that Z(z) bifurcates again, now with a period four times
the original. [Similar, but less dramatic changes occur in Y(r) and X(s).] As r
decreases below about 144, the behavior of all the variables becomes completely
aperiodic. We have seen yet another period-doubling route to chaos. (We have not
generated a complete bifurcation diagram for this range of r values because of the

amount of computation time involved.)
20

z r=150

200

i “

L.l

Fig. 1.21. Z(r) for the Lorenz equations with = 150. After an initial transient, the behavior
is periodic with a period twice that seen in Fig. 1.20. Notice the alternating heights of the
largest peaks in this figure.



L Attrattore Caotico di Lorenz
X =p¥-X) (Dim.Frattale D=2.06 + 0.01)

Y=-XZ+rX -Y
Z=XY-bzZ
p=10, b=8/3 "
r= 160 “
r= 150 PERIOD =™
| DOUBLING =,
r= 146 -

r= 143 4"—'“-

CAOS!




X =pY-X)

Divergence of Trajectories in the Lorenz Model
We now want to address the crucial question in deciding whether or not the Lorenz
model equations exhibit chaotic behavior for some range of r values: Do nearby

trajectories diverge for that range of r values? Figurc 1.22 shows two trajectories
for_r = 143 with slightly different initial conditions. We see that after only a few

oscillations the trajectories are completely different. Although this result does not
Ve-XZ+rX =Y "p;ove the existence of the divergence of nearby trajectories on the average, it does
7= XY -bZ suggest that the Lorenz model displays chaotic behavior for r = 143.
p=10, b=8/3 200 | ponae
z I
150
r= 160 100 &
r= 150 PERIOD B — gt b el
‘1’ DOUBLING
r= 146 200 |
} : |
150
r= 143
100
CAOS! 50 | 1 | | | 1 | 1 ] 1
0 2 4 6 8 10

t

Fig. 1.22. Two trajectories in the Lorenz model showing divergence of nearby trajectories for
r=143. The trajectory in the upper panel starts with the initial conditions X =20, ¥ =0,Z =
163. In the lower panel the nearby trajectory starts with X =20, ¥=0, Z= 166. After only a
few oscillations the trajectories are completely different.



B

RIEPILOGO
FINALE

r < 1: un unico nodo nell’origine.

1 <r < 13.93: un saddle point (index 1) nell’'origine + due nodi a spirale simmetrici off-
origine.

r = 13.93: doppia connessione omoclinica tra i due rami dell'out-set (1Dim) del saddle
point nell’origine e il suo stesso in-set (2Dim) — TRANSIENT CHAOS

13.93 < r < 24.74: un saddle point (index 1) nell’'origine + due nodi a spirale simmetrici off-
origine + due cicli limite saddle (stabili all’interno, instabili all’esterno) attorno ai due nodi

off-origine. Questi cicli limite diventano sempre piu piccoli per r > 24.74.

r = 24.06: i due rami dell’'out-set (1Dim) del saddle point nell’origine formano una doppia
connessione eteroclinica con gli in-set (2D) dei cicli limite saddle attorno ai due punti fissi
off-origine. Si forma ’ATTRATTORE CAOTICO di Lorenz.

r > 24.74: un saddle point (index 1) nell’'origine + due saddle points (index 2) a spirale
simmetrici off-origine. | due cicli limite sono ormai collassati sui due punti fissi off-origine.
24.74 < r < 143: comportamento CAOTICO.

r: 160 -> 143 : sequenza di raddoppiamenti di periodo nei cicli limite attrattivi che si
sviluppano attorno ai due punti fissi off-origine.



4.12 Homoclinic Tangles and Horseshoes

A very elegant and useful geometric model of the effect of homoclinic and
heteroclinic tangles on state-space orbits is the Smale horseshoe. This equestrian
metaphor was introduced by the mathematician Stephen Smale (SMAG67) to capture

the essence of the effects of homoclinic tangles on dynamical systems. The
horseshoe construction has the additional benefit of providing a scheme that allows
mathematical proofs of many important aspects of the dynamics of the system. We
shall introduce the basic horseshoe idea here. In Chapter 5, we will take up the
mathematical results from this construction.

To understand Smale’s construction, let us consider a small rectangle of initial
Stephen Smale points surrounding a saddle point in the Poincaré section of a dynamical system.
As the system evolves, this rectangle of points will tend to be stretched out along
the unstable manifold direction W* and compressed along the W* direction. The

rectangle will eventually reach the tangled region of W* shown in Fig. 4.13, and its
(w

shape will resemble a horseshoe. As the system evolves further, this horseshoe will

— in fact eventually overlap with the original rectangle. Smale constructed a mapping
Q° function, now known as the Smale horseshoe map, which captures the essence of

this process. \

(

Fig. 4.18. The Smale horseshoe map is an abstraction from the action of a homoclinic tangle

on a rectangle of initial conditions. In the upper part of the figure a rectangle of initial =
conditions is shown superposed on part of a homoclinic tangle. Under the evolution of the

system that rectangle will be stretched along the unstable manifold direction and compressed

along the stable manifold direction. In the lower part of the figure is Smale’s abstraction of

that effect in the shape of a horseshoe superposed on the onginal rectangle.



Stephen Smale

Square of initial points
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In the Smale horseshoe map, a square of initial points is first stretched in one
direction and compressed in the orthogonal direction. The now elongated rectangle
is folded and overlaid on the initial square (see Fig. 4.18). The process is iterated,
and one looks for those points that remain within the area of the initial square as the
number of iterations goes to infinity. This stretching in one direction, compressing
in another, combined with the folding, mimics the effect of the homoclinic tangle
on trajectories in the dynamical system. The famous Smale-Birkhoff Homoclinic

Theorem proves [Guckenheimer and Holmes, 1990] that having a homoclinic
tangle guarantees that the system will have “horseshoe dynamics.”

Stretching, Compression and Folding

Although the original Smale horseshoe map does not have an attractor and hence
cannot be a model for the chaotic behavior of a dissipative system, many authors
have decided to equate chaotic behavior with horseshoe dynamics because the
stretching (in at least one state space direction) gives rise to exponential divergence
of nearby initial conditions. Certainly in the general sense of requiring stretching in
one direction, compression in another, combined with folding to keep the system in

l

Folding

Folding

Stratching Stratching



a finite region of state space, horseshoe dynamics must be a general feature of all
chaotic behavior.

As mentioned earlier, in many systems the stretching and folding is actually
effected by heteroclinic connections, which link the unstable manifold of one
saddle cycle (in the original state space, a saddle point in the corresponding
Poincaré section) to the stable manifold of another saddle cycle or saddle point.
The unstable manifold of the latter may then reconnect back to the original saddle
cycle. The net effect of this heteroclinic cycle on a cluster of initial condition
points is the same topologically as the effect of a homoclinic connection.

The effect of a homoclinic or heteroclinic tangle on a cluster of initial
Stephen Smale condition points can be seen elegantly in fluid mixing experiments. A two-

dimensional fluid flow subject to a periodic perturbation may show chaotic
trajectories for tracer particles suspended in the fluid. (We will explore this
connection in more detail in Chapter 11.) Tracer particles injected near a saddle
point (called a hyperbolic point in the fluid dynamics literature) show horseshoe
type behavior with stretching, folding, and reinjection near the saddle point (see
[Ottino, 1989] and OTT89 for beautiful pictures of these effects).

Local Lyapunov Exponent
in a simulation of the
Gulf of Mexico

https://www.youtube.com/watch?v=IjPhjmdxQGg




1.6 Determinism, Unpredictability, and Divergence of Trajectories

What is the importance of the divergence of nearby trajectories? We have claimed
that this property is a signature of the kind of behavior we want to call chaotic and
that this property allows us to distinguish between aperiodic behavior due to chaos
and that due to external noise. The theoretical details will be taken up in later
chapters. Here we want to discuss this behavior qualitatively.

The importance of divergence of nearby trajectories is the following: If a
system, like the Lorenz model, displays divergence of nearby trajectories for some
range of its parameter values, then the behavior of that system becomes essentially
unpredictable. The system is still deterministic in the sense that if we knew the
initial conditions of a trajectory exactly, then we could predict the future behavior
of that trajectory by integrating the time-evolution equations for the system. If we
make the smallest change in those initial conditions, however, the trajectory quickly
follows a completely different path. Since there is always some imprecision in
specifying initial conditions in any real experiment or real numerical calculation,
we see that the actual future behavior is in fact unpredictable for a chaotic system.
To make this point more forcefully, we like to say that the future of a chaotic
system is indeterminable even though the system is deterministic.

CAOS DETERMINISTICO

Fig. 4.1, A sketch of trajectories in a three-dimensional state space. Notice how two nearby
trajectories can continue to behave quite differently from each other yet remain bounded by
weaving in and out and over and under each other.




CAOS DETERMINISTICO

This unpredictability is related to the fact that we cannot write down a closed-
form solution for the nonlinear equations used to describe the system. A closed-
form solution is a “formula” X(r) = X, tanh 7 (a ), for example, or a series
solution, perhaps with an infinite number of terms, X(7) = a\(r) + ay)(?) + a5(1).... If
such a closed-form solution could be found, then we could predict the future
behavior of the system simply by evaluating the formula for some value of ¢
corresponding to a future time. For a slightly different set of initial conditions, we
would just evaluate the formula for those new initial conditions. Since the formula
is presumably continuous in its dependence on parameters and initial conditions,
small changes in those parameters and initial conditions would lead to small
changes in X(#). So, the large changes in X(¢) that occur for a chaotic system when
we make small changes in the initial conditions cannot be represented by a closed-
form solution. For a chaotic system, we must integrate the equations step-by-step
to find the future behavior. (In essence we have to let the “experiment” run to find
out what will happen.) The divergence of nearby trajectories means that any small
error in specifying the initial conditions will be “magnified” as we integrate the
equations. Thus, a small change in initial conditions leads to grossly different long-

term behavior of the system, and we cannot in practice predict that long-term
behavior in detail.




The unpredictability problem in nonlinear systems can be even worse than we
imagine. For example, we might think that even though we cannot predict the
detailed behavior of a trajectory, at least we know that the trajectory will end up
within a particular attracting region in state space and will remain within that
region. Unfortunately, many nonlinear systems have multiple attractors for a given
set of parameter values. Trajectories starting at different state space points will end
up on different attractors. Each attractor has its own basin of attraction. In some
cases these basins have relatively simple geometric structures, and we can easily
determine which initial conditions will lead to motion on the different attractors. In
other cases, the basins can be so intertwined (forming so-called riddled basins) that
even the smallest change in initial conditions can lead to a trajectory that ends up
on a different attractor. In that case we lose even the modest ability to predict
which attractor the trajectory will end up on (SO093a) (LAW94)(LAI99).

Dimensione frattale dell’attrattore
caotico di Lorenz: D=2.06 + 0.01




- ASHTON KUTCHER

The effect of the di'vergence of neérby trajéciories on the behavior of
nonlinear systems has been expressed in an elegant metaphor known as the
butterfly effect. This metaphor first appeared in the title of a talk given by E. N.

Lorenz' at the December 1972 meeting of the American Association for the
Advancement of Science in Washington, D.C.: “Predictability: Does the Flap of a
Butterfly’'s Wings in Brazil set off a Tornado in Texas.” Earlier, Lorenz had used a

seagull for this metaphor, but the name took an interesting Nabokovian twist with
this paper’s title. Lorenz’s point was that if the atmosphere displays chaotic
behavior with divergence of nearby trajectories or sensitive dependence on initial
conditions, then even a small effect, such as the flapping of a butterfly’s (or other
avian creature’s) wings would render our long-term predictions of the atmosphere
(that is, the weather) completely useless.

~ AMY SMART .
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Uattrattore di Lorenz e l'effetto farfalla




4.13 Lyapunov Exponents and Chaos

Our discussion of chaotic behavior has so far been qualitative. Now we want to
introduce one method of quantifying chaotic behavior. There are two motivations
here. First, we want some quantitative test for chaotic behavior; something that
can, at least in principle, distinguish chaotic behavior from noisy behavior due to
random, external influences. Second, we would like to have some quantitative
measure of the degree of chaoticity; so, we can see how chaotic behavior changes
as the system’s parameters are changed. In this section, we will introduce
Lyapunov exponents as one possible quantitative measure of chaos. In Chapter 5,
we will describe how to find Lyapunov exponents for iterated maps. In Chapters 9
and 10, we will describe how to find Lyapunov exponents, as well as other
quantifiers of chaos, from experimental data. In this section we will focus attention
on dynamical systems described by a set of ordinary differential equations.

As we have seen in Section 3.7, a Lyapunov exponent is a measure of the rate
of attraction to or repulsion from a fixed point in state space. In Section 4.2, we
indicated that we could also apply this notion to the divergence of nearby
trajectories in general at any point in state space. For a one-dimensional state
space, let xy be one initial point and x a nearby initial point. Let xo(f) be the
trajectory that arises from that initial point, while x(7) is the trajectory arising from
the other initial point. Then, if we follow the line of reasoning leading to Eq. (3.7-
3), we can show that the “distance” s between the two trajectories, s = x(f) — xo(f)
grows or contracts exponentially in time. Let us work through the details.




The time develdpment equation is assumed to be

x(t) = f(x) (4.13-1)
Since we assume that x is close to xy, we can use a Taylor series expansion to write

f(x):f(xo)-l»df‘-t(:) (x—x)+... (4.13-2)

%o

We now find that the rate of change of distance between the two trajectories is
given by
§=X-%
=f(x) - f(x) (4.13-3)
af

=(—t;,° (x_xo)

where we have kept only the first derivative term in the Taylor series expansion of
fix). Since we expect the distance to change exponentially in time, we introduce the
Lyapunov exponent A as the quantity that satisfies

s(t) = s(t = 0)e* (4.13-4)
If we differentiate Eq. (4.13-4) with respect to time, we find
S — — h
s=As(t=0)e @.13-5)
=As
Comparing Eq. (4.13-5) and Eq. (4.13-3) yields
L) (4.13-6)
dx o

Thus we see that if A is positive, then the two trajectories diverge; if A is negative,
the two trajectories converge.



In state spaces with two (or more) dimensions, we can associate a (local)
Lyapunov exponent with the rate of expansion or contraction of trajectories for
each of the directions in the state space. In particular, for three dimensions, we may
define three Lyapunov exponents, which are the eigenvalues of the Jacobian matrix
evaluated at the state space point in question. In the special case for which the
Jacobian matrix has zeroes everywhere except for the principal (upper-left to lower-
right) diagonal, the three eigenvalues (and hence the three local Lyapunov
exponents) are given by

-

4.13-7
. ( a)

%

% =8x,

(4.13-7b)

s (4.13-7¢)
ox,

where the partial derivatives are evaluated at the state space point in question.

In practice, we know that the derivative of the time evolution function
generally varies with x; therefore, we want to find an average of A over the history
of a trajectory. If we know the time evolution function, we simply evaluate the
derivative of the time evolution function along the trajectory and find the average
value. (For a dissipative, one-dimensional system, we know that this average
Lyapunov exponent must be negative.)

[ We define a chaotic system to be a system which has at least one positive |
average Lyapunov exponent. :




Behavior of a Cluster of Initial Conditions

To develop a geometric interpretation of the Lyapunov exponents, we consider a
small rectangular volume of initial conditions with sides s,, s, and s; surrounding
this point with the sides oriented along the three state space axes. That volume will
evolve in time as:

1dV &of . shy+
v méx—‘-dtV(I) V(t)=s,s,s3e"‘ g (4.13-8)

If we compare Eq. (4.13-8) with Eq. (3.13-6), we see that the sum of the three
Lyapunov exponents gives us the mathematical divergence of the set of time
evolution functions. Again, in practice, we are interested in the average of these
Lyapunov exponents over the history of a trajectory. For a dissipative system, the
average of the sum of the exponents must be negative.

For a three-dimensional state space system described by a set of three first-
order differential equations, one of the average Lyapunov exponents must be 0
unless the attractor is a fixed point (HAK83). (The O value for a Lyapunov
exponent corresponds to the negligible attraction or repulsion of trajectories starting
from nearby points that could be carried into each other by following the same
trajectory for a short time.) Thus, for a dissipative system, at least one of the
remaining average Lyapunov exponents must be negative. If the system is chaotic,
one of the Lyapunov exponents is positive for a three-dimensional state space.

In state spaces with four (or more) dimensions, we might have more than one
positive average Lyapunov exponent. In those cases, we say we have hyperchaos.

One possible route from periodic behavior to hyperchaotic behavior is discussed in
HAL99.



It may be helpful to visualize what is happening with a more pictorial
construction. For a dissipative system, we pick an initial point and let the resulting
trajectory evolve until it is on the attracting region in state space. Then, we pick a
trajectory point and construct a small sphere around it. Next, we follow the
evolution of trajectories starting from initial points inside that sphere (some of
which may not be on the attractor). In general, the sphere may be stretched in one
direction and contracted in others as time goes on as shown schematically in Fig.
4.19. The sphere will be distorted into an ellipsoid. (For a dissipative system, the
volume must contract to 0 if we follow the system long enough.)

® > | <

< o

Fig. 4.19. A schematic representation of the evolution of a sphere of initial points in state
space. The sphere starts in the upper-left-hand side. Time increases as we go clockwise
around the figure. For a dissipative system, the volume associated with the set of initial
points must go to 0. A chaotic system will exhibit exponential stretching of the sphere in at
least one direction.



If we evaluate the (assumed) exponential rates of stretching and contraction
for the different axes of the ellipsoid, we can find the Lyapunov exponents for that
region of the attractor. Repeating this procedure along the trajectory allows us to
calculate the set of average Lyapunov exponents for the system. This set of
average Lyapunov exponents is called the spectrum of Lyapunov exponents. If at
least one of the average Lyapunov exponents is positive, then we conclude that the
system displays (on the average) divergence of nearby trajectories and is “truly”
chaotic. Table 4.3 summarizes the relationship between the spectrum of Lyapunov
exponents and the type of attractor. (0, —, —,) means that one of the Lyapunov
exponents is zero and two are negative.

In practice the computation of these average Lyapunov exponents is
complicated because the ellipsoid is rotated and distorted as the trajectories evolve.
Various algorithms have been developed to calculate the Lyapunov exponents if the
time evolution equations are known. The reader should consult the references
given at the end of the chapter.

Table 4.3
Spectra of Lyapunov Exponents and Associated Attractors
Three-dimensional State Space

Signs of As Type of Attractor
(-y_,"’ Fixed Point
(0,—- Limit Cycle
(0,0,-) Quasi-Periodic Torus

(+009—) ChaO(iC
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