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4.6 Limit Cycles and Poincaré Sections (dim = 1)

As we saw in Chapter 3, dynamical systems in two (and higher) dimensions can
also settle into long-term behavior associated with repetitive, periodic limit cycles.
We also learned that the Poincaré section technique can be used to reduce the
dimensionality of the description of these limit cycles and to make their analysis
simpler.

First, we focus on the construction of a Poincaré section for the system. For a
three-dimensional state space, the Poincaré section is generated by choosing a
Poincaré plane (a two-dimensional surface) and recording on that surface the
points at which a given trajectory cuts through that surface. (In most cases the
choice of plane is not crucial as long as the trajectories cut the surface transversely,
that is, the trajectories do not run parallel or almost parallel to the surface as they
pass through; see Fig. 4.4.) For autonomous systems, such as the Lorenz model

equations, we choose some convenient plane in the state space, say, the XY plane
for the Lorenz equations. When a trajectory crosses that plane passing from, for
example, negative Z values to positive Z values, we record that crossing point.

Ao

" <¢—— Poincaré Plane ——1»

TN TN

ol
Fig. 44. A Poincaré section for a three—dimensional state space. On the left the trajectory
crosses the Poincaré plane transversely. On the right the intersection is not transverse
because the trajectory runs parallel to the plane for some distance.




In later discussions, it will be useful to indicate on the Poincaré section the
record of trajectory intersections with the plane as trajectories approach or
diverge from the periodic points. For example, Fig. 4.6 shows a sequence
of points Py, Py, P, . . . as a trajectory approaches an attracting limit cycle
| in a three-dimensional state space. (Compare Fig. 4.6 with Fig. 3.13.)
| The reader should be warned that in some diagrams found in the literature
this series of dots will be connected with a smooth curve intersecting (x,",

x ). It is important to remember that this curve is not a trajectory. In fact

the Poincaré intersection of any single trajectory is just a sequence of

points as shown in Fig. 4.6. If a smooth curve is drawn on this kind of

diagram, it represents the intersection points of an infinite family of

trajectories, all of which are approaching (x,", x,). Later we shall see

{ cases in which such curves intersect. It is important to remember that this

| intersection does not violate the No-Intersection Theorem because the |
intersecting curves in this case are not themselves trajectories.

Fig. 4.6. The sequence of points Py, Py, Py, . . . is the record of successive intersections of a
single trajectory with the Poincaré plane (the plane with x; = 0) as the trajectory goes from x;
>0tox; <0.




MAPPA DI POINCARE’ 2D PER LO STUDIO DELLA STABILITA’ DEI CICLI LIMITE IN 3D

We now return to the general discussion of limit cycles. The stability of the
limit cycle is determined by a generalization of the Poincaré multipliers introduced
in the previous chapter. We assume that the uniqueness of the solutions to the
equations used to describe the dynamical system entails the existence of a Poincaré
map function (or in the present case, a pair of Poincaré map functions), which relate
the coordinates of one point at which the trajectory crosses the Poincaré plane to the
coordinates of the next (in time) crossing point. (Again we assume we have chosen
a definite crossing sense; e.g., from top to bottom, or from left to right.) These
functions take the form

I:HH] iy F;{l‘l{”,x;.}} mappa di {4 ﬁ.-l]
(m+l) _ F. (a) Lin) i ¢ i *
A0 = B (x™,x™) Poincaré 2 dim

0%
o 10

where the parenthetical superscript indicates the crossing point number.

Here these Poincaré map functions have arisen from the consideration of a
Poincaré section for trajectories arising from a set of differential equations. In
Chapter 5, we shall consider such map functions as interesting models in their own
right, independent of this particular heritage.

The fixed points of the Poincaré section are those points that satisfy

5 = Fn.5) (4.62)
5 =55, 5)
Each fixed point in the Poincaré section corresponds to a limit cycle in the full
three-dimensional state space.



MAPPA DI POINCARE’ 2D PER LO STUDIO DELLA STABILITA’ DEI CICLI LIMITE IN 3D

We can characterize the stability of these fixed points by finding the
characteristic values of the associated Jacobian matrix of derivatives [sometimes
called the Floquet matrix, after Gaston Floquet (1847-1920), a French
mathematician who studied, among other things, the properties of differential
equations with periodic terms]. This matrix is analogous to the Jacobian matrix
used to determine the characteristic values of a fixed point in the full state space.
The Jacobian matrix JM is given by

mappa 1 dim i mappa 2 dim
X, 1 |
i > o M
¥ "~ x| xz 1
; ) M = —> 4.6-3
d,, =M"d, G% ™M= aF, oF, M, 4

N—"""7, 2%

where the matrix is to be evaluated at the Poincaré map fixed point in question.

. The characteristic values of this matrix determine the stability of the limit cycle. A
- stable limit cycle attracts nearby trajectories, while an unstable limit cycle repels
. nearby trajectories. In principle, we can use the mathematical methods given in

Chapter 3 to find these characteristic values. In practice, however, we most often
cannot find these characteristic values explicitly, since, to do that, we would need to
know the exact form of the Poincaré map function, and in most cases, we do not
know that function. [In Chapter 5, we will examine some models that do give us
the map function directly. However, for systems described by differential
equations in state spaces of three (or more) dimensions, it is in general impossible
to find the map functions.]



Stability of Limit Cycles

As we saw in two-dimensional systems, if the fixed point is to be stable and have
trajectories in its neighborhood attracted to it, then the absolute value of each
multiplier must be less than 1. [In state spaces with three or more dimensions, we
can have M < 0j so the stability criterion is formulated using the absolute value of
the multipliers.]

The types of limit cycles are
L Stable limit cycle (node for the Poincaré map)

- IL Repelling limit cycle (repellor for the Poincaré map)
[1L Saddle cycle (saddle point for the Poincaré map)

Table 4.2 lists the categories of characteristic multipliers, the associated
Poincaré plane fixed points and the corresponding limit cycles for three-
dimensional state spaces. (Compare this table to Table 3.4 for limit cycles in two-
dimensional state spaces.)

Table 4.2 .
Characteristic Multipliers for Poincaré Sections
of Three-Dimensional State Spaces
Type of Fixed Point  Characteristic Multiplier ~ Corresponding Cycle
Node IM, .]M, <1 Limit Cycle
Repellor M|, M, |>1 Repelling Cycle
Saddle M. |<1,IM,|>1 Saddle Cycle




Of course, the characteristic multipliers could alsoc be complex numbers. Just
as we saw for fixed points in a twc-dimensional state space, the complex
multipliers will form a complex-conjugate pair. In more graphic terms, the
successive Poincaré intersection points associated with complex-valued multipliers
rotate around the limit cycle intersection point as they approach or diverge from
that point. Mathematically, the condition for stability is still the same: the absclute
value of both multipliers must be less than 1 for a stable limit cycle. In terms of the
corresponding Argand diagram (complex mathematical plane), both characteristic
values must lie within a circle of unit radius (called the unif circle) for a stable limit
cycle. See Fig. 4.7. As a control parameter is changed the values of the
characteristic multipliers can change. If at least one of the characteristic multipliers
crosses the unit circle, a bifurcation occurs. Some of these bifurcations will be
discussed in the latter part of this chapter.

ImM

UNIT CIRCLE
Complex

characteristic
multiplier

Re M

-1 1




Stable
Limit Cycles

M| |, ] <1

Repelling
Limit Cycles

CARUAES

Saddle
Limit Cycles

M | <1, |M, |>1

ImM
Node

Re M

ImM
Repellor

€

)ReM

ImM
Saddle

Re M

(A

Fig. 4.7. Characteristic multipliers in the complex plane. If both multipliers lie within a
circle of unit radius (the unit circle), then the corresponding limit cycle is stable. If one (or
both) of the multipliers lies outside the unit circle, then the limit cycle is unstable.
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Fig. 4.7. Characteristic multipliers in the complex plane. If both multipliers lie within a
circle of unit radius (the unit circle), then the corresponding limit cycle is stable. If one (or
both) of the multipliers lies outside the unit circle, then the limit cycle is unstable.




4.7 Quasi-Periodic Behavior (dim = 2)

For a three-dimensicnal state space, a new type of motion can occur, a type of
motion not possible in cne- or two-dimensional state spaces. This new type of
motion is called guasi-periodic because it has two different frequencies associated
with it; that is, it can be analyzed into two independent, periodic motions. For
quasi-periodic motion, the trajectories are constrained to the surface of a torus in the
three-dimensional state space. A mathematical description of this kind of motion is

given by: NOTA BENE: NON SONO EQUAZIONI DIFFERENZIALI!
Equazioni della traiettoria % =(R+rsina,r)coswyt
di un punto (X,(t), X,(t) e X4(t)) =4 X; = rcosa,z (4.7-1)
sull’attrattore quasiperiodico x, = (R +rsin,f)sinw,

where the two angular frequencies are denoted by w, and @,. Geometrically, Egs.
(4.7-1) describe motion on the surface of a torus (with the center of the torus at the
origin), whose large radius is R and whose cross-sectional radius is r. In general the
torus {or doughnut-shape or the shape of the inner tube of a bicycle tire) will look
something like Fig. 4.8. The frequency @, corresponds to the rate of rotation
around the large circumference with a period T, = 2n/w, , while the frequency
@, corresponds to the rate of rotation about the cross section with 7, =2n/w, . A
general torus might have elliptical cross sections, but the ellipses can be made into
circles by suitably rescaling the coordinate axes. torus o

minor radius

Fig. 48 Quasi-periodic trajectories roam over the surface of a torus in three-dimensional
state space. Illustrated here is the special case of a torus with circular cross sections. r1s the
minor radius of the cross section. R is the major radius of the torus. A periodic trajectory on
the surface of the torus would close on itself. On the right. a perspective view of a torus and
a Poincaré plane.

major radius



The Poincaré section for this motion is generated by using a Poincaré plane
that cuts through the torus. What the pattern of Poincaré map points looks like
depends on the numerical relationship between the two frequencies as illustrated in
Fig. 4.9. If the ratio of the two frequencies can be expressed as the ratioc of two
integers (that is, as a “rational fraction,” 14/17, for example), then the Poincaré
section will consist of a finite number of points. This type of motion is often called
Jrequency-locked motion because one of the frequencies is locked, often over a
finite control parameter range, so that an integer multiple of one frequency is equal
to ancther integer multiple of the cother. (The terms phase-locking and mode-
locking are also used to describe this behavior.)

= Periodic
WR 2 [4\
o %
Wr 1\ ,;’J
Winding Number i
razionale Xy

Sezione di
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Fig. 4.9. A Poincaré section intersects a torus in three-dimensional state space. The diagram
on the upper left shows the Poincaré map points for a two-frequency periodic system with a
rational ratio of frequencies. The intersection points are indicated by asterisks. The diagram
on the lower left is for quasi-periodic behavior. The ratio of frequencies is irratipnal, and
eventually the intersection points fill in a curve (sometimes called a “drift ring”) in the
Poincaré plane.



If the ratio of frequencies cannot be expressed as a ratio of integers, then the
ratic is called “irrational” (in the mathematical, not the psychological sense). For

the irrational case, the Poincaré map points will eventually fill in a continucus
curve in the Poincaré plane, and the motion is said to be quasi-periodic because the
maoticn never exactly repeats itself. (Russian mathematicians call this conditionally
periodic. See, for example, [Amold, 1983). The term almost periodic is also used
in the mathematical literature.)

In the quasi-periodic case the motion, strictly speaking, never exactly repeats
itself (hence, the modifier quasi), but the motion is not chactic; it is composed of
two (or more) periodic components, whose presence could be made known by
measuring the frequency spectrum (Fourier power spectrum) of the motion. We
should point cut that detecting the difference between quasi-periodic motion and
motion with a rational ratio of frequencies, when the integers are large, is a delicate
question. Whether a given experiment can distinguish the two cases depends on the
resolution of the experimental equipment. As we shall see later, the behavior of the
system can swiich abruptly back and forth between the two cases as a parameter of
the system is varied. The important point is that the attractor for the system is a
two~dimensional surface of the torus for quasi-periodic behavior.
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We have now seen the full pancply of regular (nonchaotic) attractors: fixed
points (dimensicn 0), limit cycles (dimension 1), and quasi-periodic attractors
(dimension 2 or more). We are ready to begin the discussion of how these
attractors can change into chaotic attractors.

We will give only a brief discussion of the period-doubling, quasi-periodic,
and intermittency routes. These will be discussed in detail in Chapters 5, 6, and 7,
respectively. A discussion of crises will be found in Chapter 7. As we shall see,
the chactic transient route is more complicated to describe because it requires a
knowledge of what trajectories are doing over a range of state space. We can no
longer focus our attention locally on just a single fixed point or limit cycle.

fixed points (dim.0) quasiperiodic
o i attractors (dim.2)
‘,/ limit cycles (dim.1)
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Rotte verso il CAOS

When the parameters of a system are changed, chaotic behavior may appear
and disappear in several different ways, even for the same dynamical system: We
may have several routes to chaos. These routes can be put into two broad
categories with several subdivisions within each category. One category includes
sequences of bifurcations involving limit cycles (or equivalently, fixed points of the
associated Poincaré map). (The period-doubling sequence in Chapter 1 belongs to
this category.) The other category involves changes in trajectories associated with
several fixed points or limit cycles. Since these changes involve the properties of
trajectories ranging over a significant volume of state space, these changes are

called “_E,lnbal” bifurcations (in contrast to “local” bifurcations associated with -

changes 1n individual fixed points).
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Rather sudden changes from regular to chaotic behavior, such as we have

seen with the Lorenz model in Chapter |, are characteristic of these global

Global Bifu rcations bifurcations. Although the nature of the long-time attractor changes suddenly as a
-, parameter is varied, these sudden changes are often heralded by chaotic transients.

l ' In a chaotic transient, the system’s trajectory wanders through state space, in an
/] apparently chaotic fashion. Eventually, the trajectory approaches a regular,
periodic attractor. As the control parameter is changed, the chaotic transient lasts
longer and longer until finally the asymptotic behavior is itself chaotic.

The questions we want to address are the following: How does this
complicated chaotic behavior develop? How does the system evolve from regular,
periodic behavior to chaotic behavior? What changes in the fixed points and in
trajectories in state space give rise to these changes in behavior?




4.8 The Routes to Chaos I: Period-Doubling

As we discussed earlier, the period-doubling route begins with limit cycle behavior
of the system. This limit cycle, of course, may have been “born” from a bifurcation
involving a node or other fixed point, but we need not worry about that now. As
some control parameter changes, this limit cycle becomes unstable. Again this

event is best viewed in the corresponding Poincaré section. Let us assume that the
periodic limit cycle generates a single point in the Poincaré section. If the limit

cycle becomes unstable by having one of its characteristic multipliers become more
negative than —1 (which, of course, means |M| > 1), then, in many situations, the
new motion remains periodic but has a period twice as long as the period of the

original motion. In the Poincaré section, this new limit cycle exhibits two points,
one on each side of the original Poincaré section point (see Fig. 4.10).
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Fig. 4.10. The Poincaré section of a trajectory that has undergone a period-doubling
bifurcation. On the left is the original periodic trajectory, which intersects the Poincaré plane
in one point. On the right is the period-doubled trajectory, which intersects the Poincaré
plane in two points, one on each side of the original intersection point.
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This alternation of intersecticn points is related to the characteristic multiplier
associated with the original limit cycle, which has gotten more negative than —1.

mappa 1 dim Since |M] > 1, the trajectory’s map points are now being “repelled” by the original Im M
.. map point. The minus sign tells us that they alternate from one side to the cther, as Node
d,,, =M"d, we can see formally from Eq. (3.16-6). This type of bifurcation is also called a flip Re M
_bifurcation because the newly born trajectory flips back and forth from one side of
the original trajectory to the other.
As the control parameter is changed further, this period-two limit cycle may @
become unstable and give birth to a period-four cycle with four Poincaré Im M
intersection points. Chapter 5 will examine in detail how, when, and where this Saddle
sequence occurs. The period-doubling process may continue until the period Re M
becomes infinite; that is, the trajectory never repeats itself. The trajectory is then
chaotic.
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Fig. 4.10. The Poincaré section of a trajectory that has undergone a period-doubling
bifurcation. On the left is the original periodic trajectory, which intersects the Poincaré plane
in one point. On the right is the period-doubled trajectory, which intersects the Poincaré
plane in two points, one on each side of the original intersection point.
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4.9 The Routes to Chaos II: Quasi-Periodicity

As a control parameter is changed, a second periodicity appears in the behavior of piral Node
the system. This bifurcation event is a generalization of the Hopf bifurcation
discussed in Chapter 3; so, it is also called a Hopf bifurcation. In terms of the
characteristic multipliers, the Hopf bifurcation is marked by having the two @
complex-conjugate multipliers cross the unit circle simultaneously.

If the ratio of the period of the second type of motion to the period of the first
is not a rational ratio, then we say, as described previcusly, that the motion is quasi-
periodic. Under some circumstances, if the contrcl parameter is changed further,
the motion becomes chactic. This route is sometimes called the Ruelle-Takens
scenario after D. Ruelle and F. Takens, who in 1971 first suggested the theoretical
possibility of this route. The main point here is that you might expect, at first
thought, to see a long sequence of different frequencies come in as the control
parameter is changed, much like the infinite sequence of period-doublings g
described in the previous section. (In 1944 the Russian physicist L. Landau had S8
proposed such an infinite sequence of frequencies as a mechanism for producing

M

In the quasi-periodic scenaric, the system begins again with a limit cycle trajectory. ‘ Im 1

e
Spiral Repellor

R
ImM
R

eM

fluid turbulence. [Landau and Lifshitz, 1959].) However, at least in some cases, the

system becomes chaotic instead of introducing a third distinct frequency for its
motion. This scenario will be discussed in Chapter 6.

Historically, the experimental evidence for the quasi-periodic route to chaos
(GOS75) played an important role in alerting the community of scientists to the
utility of many of the newly emerging ideas in nonlinear dynamics. During the late

Lev Landau ‘

1970s and early 1980s there were many theoretical conjectures about the necessity 1505 190
of the transition from two-frequency quasi-periodic behavior to chaos. More recent

work (see for example, BAT88) has shown that systems with significant spatial

extent and with more degrees of freedom can have quasi-periodic behavior with

three or more frequencies before becoming chaotic.



III 4.10 The Routes to Chaos III: Intermittency and Crises

Chapter 7 contains a detailed discussion of intermittency and crises; so, we will
give only the briefest description here. The| intermittency | route to chaos is
characterized by dynamics with imegularly occurring bursts of chaotic behavior
interspersed with intervals of apparently periodic behavior. As some control
parameter of the system is changed, the chaotic bursts become longer and occur
more frequently until, eventually, the entire time record is chaotic.

A [crisis |is a bifurcation event in which a chaotic attractor and its basin of
attraction suddenly disappear or suddenly change in size as some control parameter
is adjusted. Alternatively, if the parameter is changed in the opposite direction, the
chaotic attractor can suddenly appear “out of the blue™ or the size of the attractor
can suddenly be reduced. As we shall see in Chapter 7, a crisis event involves the
interaction between a chaotic attractor and an unstable fixed point or an unstable

limit cycle.
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IV 4.11 The Routes to Chaos IV: Chaotic Transients and Homoclinic Orbits

In our second broad category of routes to chaos, the global bifurcation category, the
chaotic transient route is the most important for systems modeled by sets of
ordinary differential equations. Although the chaotic transient route to chaos was
one of the first to be recognized in a model of a physical system (the Lorenz
model), the theory of this scenario is, in some ways, less well developed than the
theory for period-doubling, quasi-periodicity, and intermittency. This lack of
development is due to the fact that this transition to chaos is not (usually) marked
by any change in the fixed points of the system or the fixed poinis of a Poincaré
section. The transition is due to the interaction of trajectories with various unstable
fixed points and cycles in the state space. The common features are the so-called
homoclinic orbits and their cousins, heferoclinic orbits. These special orbits may
suddenly appear as a control parameter is changed. More importantly, these orbits
strongly influence the nature of other trajectories passing near them.




What is a homoclinic orbit? To answer this question, we need to consider
saddle cycles|in a three-dimensional state space. (These ideas carry over in a
straightforward fashion to higher-dimensional state spaces.) You should recall that
saddle points and saddle cycles and, in particular, their in-sets and out-sets serve to
organize the state space. That is, the in-sets and out-sets serve as “boundaries”
between different parts of the state space and all trajectories must respect those
boundaries. We will focus our attention on a saddle point in the Poincaré section of
the state space. This saddle point corresponds to a saddle cycle in the original
three-dimensional state space (see Fig. 4.11). We can consider the saddle cycle to
be the intersection between two surfaces: One surface is the in-set (that is, the
stable manifold) associated with the cycle. The other surface is the out-set
(unstable manifold) associated with the cycle. Trajectories on the in-set approach
the saddle cycle as time goes on. Trajectories on the out-set diverge from the cycle
as time goes on. Trajectories that are near to, but not on, the in-set will first
approach the cycle and then be repelled roughly along the out-set (unstable

manifold).
2 dim: saddle point 3 dim: saddle cycle x
Poincaré Plane
Unstable Mauifoldx
Saddle Pont
Stable »
x Saddle Cycle—Y (\ \

Fig. 411. A saddle cycle in a three—dimensional state space. The stable and unstable

manifolds are surfaces that intersect at the saddle cycle. Where the saddle cycle intersects a

Poincaré plane we have a saddle paint for the Poincaré map function. A portion of one ‘\
trajectory, repelled by the saddle cycle, is shown on the unstable manifold, and a portion of Unstable

another trajectory, approaching the saddle cycle, is shown on the stable manifold. Stable Manifold
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Fig. 4.12 shows the equivalent Poincaré section with a saddle point P where

the saddle cycle intersects the plane. We have sketched in some curves to indicate
schematically where the in-set and out-set surfaces cut the Poincaré plane. These
curves, labeled W(P) and W¥(P), are called the stable and unstable manifolds of the
saddle point P. Since the in-set and out-set of a saddle cycle are generally two-
dimensional surfaces (in the original three-dimensional state space), the intersection
of one of these surfaces with the Poincaré plane forms a curve. It is crucial to
realize that these curves are not trajectories. For example, if we pick a point s, on
W{(P), a point at which some trajectory intersects the Poincaré plane, then the
Poincaré map function F gives us 5,, the coordinates of the point at which the
trajectory next intersects the plane. From s,, we can find s,, and so on. The
sequence of points lies along the curve labeled W(P) and approaches Pas n — .
Similarly, if &y is a point along W*(P), then Flug) = uy, F(u,) = uy, and so on,
generates a series of points that diverges from P along W*(P). If we apply the
inverse of the Poincaré map function F*" to up, we generate a sequence of points
u_, u_, , and so on, that approaches P as n — —==. The curves drawn in Fig. 4.12
represent the totality of such sequences of points taken with infinitely many starting
points. For any one starting point, however, the sequence jumps along W* or W*, it
does not move smoothly like a point on a trajectory in the original state space.
Fig. 4.12. Point P is a saddle point in a
Poincaré section. It corresponds o a
saddle cycle in the full three~dimensional
state space. The intersection of the in-set
of the saddle cycle with the Poincaré
plane generates the curve labeled W
The intersection of the out-set of the
saddle cycle with the Poincaré plane
generates curve W,




As a control parameter is changed, it is possible for W'(P) and W'(P) to
approach each other and in fact to intersect, say, at some point ¢. If this intersection
occurs, we say that we have a homoclinic intersection at g, and the point g is called
a homoclinic (intersection) point. It is also possible for the unstable manifold of
one saddle point to intersect the stable manifold from some other saddle point. In
that case we say we have a heteroclinic intersection. Other heteroclinic
combinations are possible. For example, we could have the intersection of the
unstable manifold surface of an index-2 saddle point and the stable manifold of a
saddle cycle. (For a nice visual catalog of the possible kinds of intersections, see
[Abraham and Shaw, 1992)[ Abraham, Abraham, and Shaw, 1996).) For now we
will concentrate on homoclinic intersections.

We now come to an important and crucial thecrem:

Fig. 413. A homoclinic tangle results
from the homoclinic intersection of the
unstable manifold W/(P) with the stable
manifold W/(P) of the saddle point P.
Each of the circled points is a homoclinic
(intersection) point. For clanty’s sake,
only a portion of the tangle is shown.

homoclinic |
intersection




If the in-sets and out-sets of a saddle point in the Poincaré section of a

TEOREMA dynamical system intersect at one homoclinic intersection point gp. then
| there must be an infinite number of homoclinic intersections.

To prove this statement, we consider the result of applying the mapping
function F to g, We get another point g,. Since g, belongs to both W* and W, so
must g,, since we have argued in the previous paragraphs that applying F to a point
on W' or W* generates another point on W* or W*. By continuing to apply F to this
sequence of points, we generate an infinite number of homoclinic points. Fig. 4.13
shows part of the resulting homoclinic tangle, which must result from the
homoclinic intersections.

Please note that the smooth curves drawn in Fig. 4.13 are not individual
trajectories. (We cannot violate the No-Intersection Theorem!) The smooth curves
are generated by taking infinitely many starting points on W* and W*. Only those
trajectories that hit one of the homoclinic points will hit (some of) the other
homoclinic points.

Fig. 413. A homoclinic tangle results
from the homoclinic intersection of the
unstable manifold W/(P) with the stable
manifold W/(P) of the saddle point P.
Each of the circled points is a homoclinic
(intersection) point. For clanty’s sake,
only a portion of the tangle is shown.

homoclinic
tangle




What is the dynamical significance of a_homoclinic point and the related
homoclinic tangle? If we now shift our attention back to the original three-
dimensional state space, we see that a homoclinic point in the Poincaré section
corresponds to a continuous trajectory in the original state space. When a
homoclinic intersection occurs, one trajectory on the unstable manifold joins
another trajectory on the stable manifold to form a single new trajectory whose
Poincaré intersection points are the homoclinic points described earlier. (To help
visualize this process, recall that the in-set and out-set of a saddle cycle in the three-
dimensional state space are, in general, two-dimensional surfaces.) This new
trajectory connects the saddle point to itself and hence is called a homoclinic
trajectory or homoclinic orbit and is said to form a homoclinic connection. As our
previous theorem states, this homoclinic trajectory must intersect the Poincaré
plane an infinite number of times.
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How does a homoclinic orbit lead to chaotic behavior? To understand this,
we need to consider other trajectories that come near the saddle point of the
Poincaré section. Generally speaking, the trajectories approach the saddle point
close to (but not on) the in-set (stable manifold), but they are then forced away from
the saddle point near the out-set (unstable manifold). After a homoclinic tangle has
developed, a trajectory will be pushed away from the saddle point by the out-set
part of the tangle, but it will be pulled back by the in-set part. It is easy to see that
the homoclinic tangle can lead to trajectories that seem to wander randomly around
the state space region near the saddle point.

Sezione
di Poincare
X
Poincaf Plane
Unstable Manifuld¥ /
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The same general type of behavior can result from a heteroclinic orbit, which
connects one saddle point (or saddle cycle in the original state space) to another. A
second heteroclinic orbit takes us from the second saddle point back to the first.
When such a combined trajectory exists, we say we have a heteroclinic connection
between the two saddle cycles. Figure 4.14 shows schematically a part of a
heteroclinic connection in a Poincaré section of a three-dimensional state space. It
is also possible to have heteroclinic orbits that link together sequentially three or

more saddle cycles.

Fig. 4.14. The Poincaré section of a
heteroclinic connection. Two saddle
cycles intersect the plane at P and o
respectively. A heteroclinic orbit links
together two saddle cycles forming a
heteroclinic connection. For the sake of
clarity only the part of the tangle
involving the unstable manifold of P
intersecting the stable manifold of P’ is
shown

Saddle point P
corrispondente al
primo saddle cycle

heteroclinic
connection

: Points

Poincaré Plane

e Heteroclinic

Saddle point P’
= corrispondente al
secondo saddle cycle




heteroclinic
connections in three-dimensional state spaces for which the in-sets and out-sets of a
saddle cycle are two-dimensional surfaces. Also shown are partial pictures of the
resulting Poincaré sections.

heteroclinic
connection
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Figure 4.16 shows three-dimensional constructions of homoclinic and
heteroclinic tangles resulting from the intersections of the in-sets and out-sets of
saddle cycles. Partial diagrams of the corresponding Poincaré sections are also
shown.

Heteroclinic
connection

Homoclinic Sezioni 7.
connection — di Poincaré |
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Cosi, nel terzo volume del suo Méthodes nouvelles de la mécanique céleste (1882-
1889), lo stesso Poincaré descrisse la scoperta del «tangle» omoclinico compiuta
mentre cercava di risolvere il problema dei tre corpi (un asteroide lanciato nel
campo gravitazionale del Sole e di Giove) per mezzo della sua «sezione» (non
avendo all’'epoca i computer, ovviamente non poté mai visualizzarla...):

«Tentiamo di farci un’idea della figura formata da queste due curve e delle loro intersezioni, che sono in
numero infinito e corrispondono ciascuna a una soluzione doppiamente asintotica, queste intersezioni
formano una sorta di reticolo, di ordito, di rete dalle maglie infinitamente fitte; ciascuna delle due curve
non deve mai intersecare se stessa, ma deve ripiegarsi su se stessa in maniera assai complicata per
poter intersecare un’infinita di volte tutte le maglie della rete».
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Cosi, nel terzo volume del suo Méthodes nouvelles de la mécanique céleste (1882-
1889), lo stesso Poincare descrisse la scoperta del «tangle» omoclinico compiuta
mentre cercava di risolvere il problema dei tre corpi (un asteroide lanciato nel
campo gravitazionale del Sole e di Giove) per mezzo della sua «sezione» (non
avendo all’epoca i computer, ovviamente non poté mai visualizzarla...):

«Tentiamo di farci un’idea della figura formata da queste due curve e delle loro intersezioni, che sono in
numero infinito e corrispondono ciascuna a una soluzione doppiamente asintotica, queste intersezioni
formano una sorta di reticolo, di ordito, di rete dalle maglie infinitamente fitte; ciascuna delle due curve
non deve mai intersecare se stessa, ma deve ripiegarsi su se stessa in maniera assai complicata per
poter intersecare un’infinita di volte tutte le maglie della rete».

Per approfondimenti: https://www.vitapensata.eu/2022/01/04/tre-corpi-al-margine-del-caos/

(Tre) corpi al margine del caos

Di: Alessandro Pluchino
4 Gennaio 2022

Come é noto, il Tre & spesso considerato il numero perfetto da diversi punti di vista: dal punto di vista matematico costituisce la sintesi del
pari (due) e del dispari (uno); dal punto di vista esoterico & il simbolo della Grande Triade (Cielo, Terra, Uomo); infine, dal punto di vista
religioso, rappresenta la perfezione divina (si pensi alla Trinita del Cristianesimo o alla Trimurti induista). Pochi forse sanno, pero, che allo
stesso tempo il tre rappresenta anche la soglia dell'imperfezione, il numero magico che ha condotto |la fisica moderna al confine tra ordine e
disordine, in quella strana regione oggi conosciuta come “Margine del Caos”, spalancando cosi le porte alla nuova Scienza della Complessita. E

la scintilla da cui questa rivoluzione concettuale & partita riguardava un problema di corpi. Per la precisione, appunto, di tre corpi.

Tutto comincid la notte tra il 31 agosto e il primo settembre del 1879 in una miniera di
carbone di Magny, nella Borgogna francese. Alle 3.45 circa del mattino un’esplosione
improvvisa scosse la miniera, ustionando e uccidendo gran parte della squadra di ventidue
minatori che si trovavano al lavoro a quell’ora. Fu soltanto la perizia e I'acume scientifico di
un giovane ingegnere incaricato delle indagini a permettere di risalire alla causa prima
dell’esplosione: si era trattato di una lampada perforata accidentalmente che aveva lasciato
uscire la fiamma da cui poi, a contatto con un’atmosfera ricca di metano come quella della
miniera, aveva avuto inizio il processo che avrebbe portato alla conflagrazione. Quel giovane
ingegnere, appena venticinquenne, si chiamava Jules-Henri Poincaré, colui che piu avanti si
sarebbe distinto come uno dei pit grandi matematici e fisici di fine Ottocento (all’epoca si
poteva essere ingegnere, matematico e fisico allo stesso tempo!) e che & considerato oggi uno

dei padri della teoria dei sistemi dinamici e il precursore assoluto della moderna teoria del

Caos. Sara lui il principale protagonista della storia che stiamo per raccontarvi.



https://www.vitapensata.eu/2022/01/04/tre-corpi-al-margine-del-caos/

Cosi, nel terzo volume del suo Méthodes nouvelles de la mécanique céleste (1882-
1889), lo stesso Poincaré descrisse la scoperta del «tangle» omoclinico compiuta
mentre cercava di risolvere il problema dei tre corpi (un asteroide lanciato nel
campo gravitazionale del Sole e di Giove) per mezzo della sua «sezione» (non
avendo all’'epoca i computer, ovviamente non poté mai visualizzarla...):

«Tentiamo di farci un’idea della figura formata da queste due curve e delle loro intersezioni, che sono in
numero infinito e corrispondono ciascuna a una soluzione doppiamente asintotica, queste intersezioni
formano una sorta di reticolo, di ordito, di rete dalle maglie infinitamente fitte; ciascuna delle due curve
non deve mai intersecare se stessa, ma deve ripiegarsi su se stessa in maniera assai complicata per
poter intersecare un’infinita di volte tutte le maglie della rete».
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The Lorenz Equations

The Lorenz model is based on a (gross) simplification of the fundamental Navier—
Stokes equations for fluids. As shown in Appendix C, the fluid motion and
resulting temperature differences can be expressed in terms of three vanahl&s,
conventionally called X(1), ¥(r), and Z(r). |

Riproducono la dinamica delle Celle

Convettive di Rayleigh-Bénard
generate dalla differenza di temperatura tra
la superficie inferiore e quella superiore del
recipiente contenente il fluido

Si veda anche:
https://www.youtube.com/watch?v=gSTNxS96fRg
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The Lorenz Equations

The Lorenz model is based on a (gross) simplification of the fundamental Navier—
Stokes equations for fluids. As shown in Appendix C, the fluid motion and

resulting temperature differences can be expressed in terms of three vanahles,
conventionally called X(r), ¥(r), and Z(r).

Significato delle 3 variabili:

X(t): dipendenza temporale
della funzione di flusso del
fluido (le cui derivate rispetto
alle variabili spaziali
rappresentano le componenti
della velocita del fluido)

Y(t): dipendenza temporale
della differenza di
temperatura tra la parte
ascendente e quella
discendente del fluido

CELLA Z(t): dipendenza temporale
CONVETTIVA ! - .

, della deviazione dalla
linearita della temperatura
in funzione della posizione
verticale




The Lorenz Equations

The Lorenz model is based on a (gross) simplification of the fundamental Navier—
Stokes equations for fluids. As shown in Appendix C, the fluid motion and

resulting temperature differences can be expressed in terms of three \ranahleﬂ,
conventionally called X(1), ¥Y(r), and Z(r).

Significato delle 3 variabili:

X(t): dipendenza temporale
della funzione di flusso del
fluido (le cui derivate rispetto
alle variabili spaziali
rappresentano le componenti
della velocita del fluido)

Y(t): dipendenza temporale
della differenza di
temperatura tra la parte
ascendente e quella
discendente del fluido

Zona di convergenza mtertl‘bplcale

(basso pressione)

Z(t): dipendenza temporale
della deviazione dalla
linearita della temperatura
in funzione della posizione
verticale




Significato dei 3 parametri
di controllo:

Prandtl number p:

rapporto tra la viscosita cinetica
del fluido e il coefficiente di
diffusione termica

Rayleigh number r:

misura della differenza di
temperatura tra |la parte
superiore e quella inferiore del
fluido

Parameter b:

esprime il rapporto tra l'altezza
verticale dello strato di fluido e la
dimenzione orizzontale delle
celle convettive

Tl'

5
p. r, and b are adjustable parameters{ p js the so-called Prandtl number, which is
defined to be the ratio of the kinetic viscosity of the fluid to its thermal diffusion

coefficient. In rough terms, the Prandtl number compares the rate of energy loss
from a small “packet™ of fluid due to viscosity éﬁchﬁ] to the rate of energy loss

from the packet due to thermal conduction. ( r Js proportional to the Rayleigh
number, which is a dimensionless measure of the temperature difference between
the bottom and top of the fluid layer. As the temperature difference increases, the
Rayleigh number increases. The final paramete "s related to the ratio of the
vertical height h of the fluid layer to the horizontal size of the convection rolls. It
turns out that for b = 8/3] the convection begins for the smallest value of the
Rayleigh number, that is, for the smallest value of the temperature difference ST.

This is the value usually chosen for the study of the Lorenz model. p is then chosen
for the particular fluid under study. Lorenz (LOR63) used the value|p = 10 (which
corresponds roughly to cold water), a value that had been used in a previous study
of Rayleigh-Bénard convection by Saltzman (SAL62). We let r, the Rayleigh
number, be the adjustable control parameter.

The Lorenz model, although based on what appears to be a very simple set of
differential equations, exhibits very complex behavior. The equations look so
simple that one is led to guess that it would be easy to write down their solutions,
that is, to give X, Y, and £ as functions of time. In fact, as we shall discuss later, it
is now believed that it is in principle impossible to give the solutions in analytic
form, that is, to write down a formula that would give X, ¥, and Z for any instant of
time. Thus, we must solve the equations numerically, which, in practice, means
that a computer does the numerical integration for us. Here, we will describe just a
few results of such an integration. The analytic underpinnings for these results will
be discussed later.
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