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Metodo dello Jacobiano per studiare i punti fissi nel caso generale a 2 dim.

Equazioni linearizzate nelle vicinanze
di un dato punto fisso ( X;,,X5. )
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3.14 The Jacobian Matrix for Characteristic Values

We would now like to introduce a more elegant and general method of finding the
characteristic equation for a fixed point. This method makes use of the so-called
Jacobian matrix of the derivatives of the time evolution functions. Once we see
how this procedure works, it will be easy to generalize the method, at least in
principle, to find characteristic values for fixed points in state spaces of any
dimension. The Jacobian matrix for the system is defined to be the following
square array of the derivatives:

Autovalori

Matrice Jacobiana J=(f“ f") ) (2,4 (3.14-1)

o fa

where the derivatives are evaluated at the fixed point. We subtract A from each of
the principal diagonal (upper left to lower right) elements and set the determinant of
the matrix equal to O:




3.18 Summary

In this chapter we have developed much of the mathematical machinery needed to
discuss the behavior of dynamical systems. We have seen that fixed points and
their characteristic values (determined by derivatives of the functions describing the
dynamics of the system) are crucial for understanding the dynamics. We have also
seen that the dimensionality of the state space plays a major role in determining the
kinds of trajectories that can occur for bounded systems.
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6.4 Rabbits versus Sheep

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:
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analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:
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Il Teorema di Poincaré-Bendixson

We shall formulate the analysis in answer to two questions: (1) When do
limit cycles occur? and (2) When is a limit cycle stable or unstable? The first
question is answered for a two-dimension state space by the famous Poincaré~

Bendixson Theorem. The theorem can be formulated in the following way:

1. Suppose the long-term motion of a state point in a two-dimensional state space
is limited to some finite-size region; that is, the system doesn’t wander off to
infinity.

2. Suppose that this region (call it R) is such that any trajectory starting within R
stays within R for all time. [R is called an “invariant set” for that system.]

3. Consider a particular trajectory starting in R. The Poincaré-Bendixson
Theorem states that there are only two possibilities for that trajectory:

b. The trajectory approaches a limit cycle as 1 — oo .

{ a. The trajectory approaches a fixed point of the system as ¢ — oo .

a. b.



Il Teorema di Poincaré-Bendixson

A proof of this theorem is beyond the scope of this book. The interested
reader is referred to [Hirsch and Smale, 1974]. We can see, however, that the
results are entirely reasonable if we take into account the No-Intersection Theorem
and the assumption of a bounded region of state space in which the trajectories live.
The reader is urged to draw some pictures of state space trajectories in two
dimensions to see that these two principles guarantee that the only two possibilities
are fixed points and limit cycles.

It is important to note that the Poincaré-Bendixson Theorem works only

| in two dimensions because only in two dimensions does a closed curve |
| separate the space into a region “inside” the curve and a region “outside.”
Thus a trajectory starting inside the limit cycle can never get out and a
trajectory starting outside can never get in. This argument is an excellent
| example of the power of topological arguments in the study of dynamical |
systems. Further, from the Poincaré-Bendixson Theorem we arrive at an
important result: Chaotic trajectories (in a bounded system) cannot occur
in a state space of two dimensions. For systems described by differential
equations, we need at least three state-space dimensions for chaos.




3.16 Poincaré Sections and the Stability of Limit Cycles

We have seen that in state spaces of two (or more) dimensions, a new type of
behavior can arise: motion on a limit cycle. The obvious question is the following:
[s the motion on the limit cycle stable? That is, if we push the system slightly away
from the limit cycle, does it return to the limit cycle (at least asymptotically) or is it
repelled from the limit cycle? As we shall see, both possibilities occur in actual
systems.

You might expect that we would proceed much as we did for nodes and
repellors, by calculating characteristic values involving derivatives of the functions
describing the state space evolution. In principle, one could do this, but Poincaré
showed that an algebraically and conceptually much simpler method suffices. This
method uses what is called a Poincaré section of the limit cycle. The Poincaré
section is closely related to the stroboscopic portraits used in Chapter 1 to discuss
the behavior of the diode circuit.

STABLE LIMIT CYCLE UNSTABLE LIMIT CYCLE




Costruzione della Sezione di Poincaré

For a two-dimensional state space, the Poincaré section is constructed as
follows. In the two-dimensional state space, we draw a line segment that cuts
through the limit cycle as shown in Fig. 3.12 (a). This line can be any line
segment, but in some cases one might wish to choose the X, or X; axes. Let us call
the point at which the limit cycle crosses the line segment going, say, point P.

(a) x2

J.H.Poncaré (1854-1912)

Fig. 3.12. (a) The Poincaré line segment intersects the limit cycle at point P. (b) The four
possibilities for sequences of Poincaré intersection points for trajectories near a limit cycle in
two dimensions.



If we now start a trajectory in the state space at a point that is close to, but not
on, the limit cycle, then that trajectory will cross the Poincaré section line segment
at a point other than P. Let’s call the first crossing point P,. As the trajectory
evolves, it will cross the Poincaré line segment again at points P,, P;, and so on. If
the sequence of points approaches P as time goes on for any starting point in the
neighborhood of the limit cycle, we say that we have an affracting limit cycle or,
equivalently, a stable limit cycle. In other words, the limit cycle is an attractor for
the system. If the sequence of intersection points moves away from P (for any
trajectory starting near the limit cycle), we say we have a repelling limit cycle or,
equivalently, an unstable limit cycle. Another possibility is that the points are
attracted on one side and repelled on the other: In that case we say that we have a
saddle cycle (in analogy with a saddle point). These possibilities are shown

graphically in Fig. 3.12 (b). P
(b) P, P, P,y P, P, P
An example of attracting limit cycle Attracting cycle

Repelling cycle  -0—o—o—¢—0——0—0—

spiral repellor

Saddle cycle —9o—0—¢o—0—o

Py Iy By Py 5 3%

Saddle cycle * o —90-¢ o —o—o

Fig. 3.12. (a) The Poincaré line segment intersects the limit cycle at point P. (b) The four
possibilities for sequences of Poincaré intersection points for trajectories near a limit cycle in
two dimensions.




How do we describe these properties quantitatively? We use what is called a
Poincaré map function (or Poincaré map, for short). The essential idea is that
given a point P), where a trajectory crosses the Poincaré line segment, we can in
principle determine the next crossing point P, by integrating the time-evolution
equations describing the system. So, there must be some mathematical function,
call it F, that relates P to P,: P, = F(P,). (Of course, finding this function F is
equivalent to solving the original set of equations and that may be difficult or
impossible in actual practice.) In general, we may write

P, = F(F) (3.16-1)

In general the function F depends not only on the original equations describing the
system, but on the choice of the Poincaré line segment as well.

To analyze the nature of the limit cycle, we can analyze the nature of the
function F and its derivatives. Two points are important to notice:

1. The Poincaré section reduces the original two-dimensional problem
to a one-dimensional problem.

2. The Poincaré map function states an iterative (finite-size time step)
relation rather than a differential (infinitesimal time step) relation.

—

The last point is important because F gives P,,, in terms of P,. The time
interval between these points is roughly the time to go around the limit cycle once,
a relatively big jump in time. On the other hand, a one-dimensional differential
equation x = f(x) tells us how x changes over an infinitesimal time interval. The
function F is sometimes called an iterated map function (or iterated map, for short).
(Because of the importance of iterated maps in nonlinear dynamics, we shall devote
Chapter 5 to a study of their properties.)




Py

P,

Let us note that the point P on the limit cycle satisfies P = F(P). Any point P°
that satisfies P* = F(P") is called a fixed point of the map function. If a trajectory
crosses the line segment exactly at P, it returns to P on every cycle. In analogy
with our discussion of fixed points for differential equations, we can ask what
happens to a point P, close to P*. In particular, we ask what happens to the distance
between P, and P as the system evolves. Formally, we look at

Pl P I Pz_P- — F(P,)—F(P‘) (3.16-2)

and use a Taylor series expansion about the point P’ to write

pz..P‘=F(P')+d—F (R~-P")+...-F(P") (3.16-3)
dP |,

If we define d; = (P; - P"), we see that

4 -4
dP

d, (3.16-4)

e
We now define the characteristic multiplier M for the Poincaré map:

=L (M>0) (3.16-5)

dP|,

M is also called the Floguet multipler or the Lyapunov multiplier. In terms of M,
we can write Eq. (3.164)

d,=Md, (3.16-6)
We find in general
d,.,=M"d, (3.16-7)



d,., =M"d, (3.16-7)

We see that if M < 1, then d; < d,, d; < d,, and so on: The intersection points
approach the fixed point P. In that case the cycle is an attracting limit cycle. If M >
1, then the distances grow with repeated iterations, and the limit cycle is a repelling
cycle. For saddle cycles, M is equal to 1 but the derivative of the map function is
— greater than 1 on one side of the cycle and less than 1 on the other side. However,
based on our discussion of saddle points for one-dimensional state spaces, we
expect that saddle cycles are rare in two-dimensional state spaces. Table 3.4 lists
the possibilities.

—

attracting limit cycle repelling limit cycle
HO<M<1 _ __ IM>1 -~ " ~o

-
77

X,

Table 3.4.
The Possible Limit Cycles and Their Characteristic
Multipliers for Two-Dimensional State Space

Characteristic Multiplier Type of Cycle
M<1 Attracting Cycle
M>1 Repelling Cycle
M=1 Saddle Cycle

(rare in two-dimensions)




We can also define a characteristic exponent associated with the cycle by the
equation

M =¢* (3.16-8)
or
A=In(M) (3.16-9)

The idea is that the characteristic exponent plays the role of the Lyapunov exponent
but the time unit is taken to be the time from one crossing of the Poincaré section to
the next.

Let us summarize: The Poincaré section method allows us to characterize the
possible types of limit cycles and to recognize the kinds of changes that take place
in those limit cycles. However, in most cases, we cannot find the mapping function
F explicitly; therefore, our ability to predict the kinds of limit cycles that occur for a
given system is limited.

attracting limit cycle repelling limit cycle

—

Ha<0 = A>0 - T T~
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Ex.1 ROMEO E GIULIETTA

Il libro di Strogatz suggerisce di studiare, come esercizio, un sistema dinamico lineare a due
dimensioni che descrive, al variare dei parametri, la variazione temporale dell’amore o
dell’odio tra due partner coinvolti in una relazione romantica. '

Definiamo x(t) come I'amore (o l'odio nel caso in cui sia negativo) di Romeo nei 'A
confronti di Giulietta al tempo “t” e y(t) 'amore (o l'odio) di Giulietta nei |
confronti di Romeo. Cosi abbiamo le seguenti due equazioni differenziali del

primo ordine: Romeo X = ax+ by

Giulietta y=cx+dy

“un
a

| parametri e “b” stabiliscono il comportamento di Romeo mentre “c” e “d” quello di
Giulietta; piu precisamente “a” descrive |'attrazione (o repulsione) di Romeo causata dai suoi
stessi sentimenti, mentre “b” l'attrazione causata dai sentimenti di Giulietta. Romeo puo
mostrare 4 comportamenti diversi in base al segno dei parametri “a” e “b”:

Appassionato: a>0; b>0 (Romeo e spinto dai suoi stessi sentimenti cosi come
da quelli di Giulietta)

Narcisistico: a>0; b<O (Romeo e spinto ancora dai suoi sentimenti ma indietreggia a causa dei
sentimenti di Giulietta)

Amanti prudenti: a<0; b>0 (Romeo si tira indietro sui suoi stessi sentimenti ma e incoraggiato
da Giulietta)

Eremita: a<0; b<0 (Romeo si tira indietro sui suoi stessi sentimenti cosi come da Giulietta)

Esercizio:
Esplorare il modello sia analiticamente che con l'aiuto di NetLogo in corrispondenza di diversi
valori dei parametri e cercare di capire quali limitazioni impone la linearita delle equazioni.



Nota: Flussi Non Lineari vs Flussi Lineari

Possono esserci piu punti fissi

Sistema Non Lineare e
Rabbits ¥=x(3-x=2y)
Sheep Y=Y(2=X=Y) | ccs y=o
y=0, x=0
Sistema Lineare
Romeo X =ax+by ax+by=0
Giulietta y =cx+dy _b cx+dy =0

Lo Jacobiano varia per ogni punto fisso e consente
di studiare il comportamento della traiettoria solo
in prossimita del punto fisso (in quanto deriva da
espansioni in serie di Taylor).

di Ik .
Yo r _(3-21’-2) -2x
Tl v |T i ’
r A =Y 2—x-2y

Quando il determinante della matrice dei coefficienti e
diverso da zero, il sistema ha esattamente un unico
punto fisso, che puo essere trovato risolvendo il
sistema di equazioni lineari. In questo caso il punto
fisso si trova all'origine (0,0) poicheé non ci sono
termini costanti nelle equazioni (sistema omogeneo).

|

7 (¢ b
-(¢ )
Lo Jacobiano coincide con la
matrice dei coefficienti e quindi
descrive il comportamento del

sistema anche a distanze maggiori
dal punto fisso (non richiede alcuna

Nei sistemi dinamici lineari non possono emergere cicli limite. | cicli limite sono
una caratteristica dei sistemi dinamici non lineari. Un sistema lineare puo avere
un comportamento periodico (come nel caso di un oscillatore armonico ideale
senza attrito), ma questo comportamento non rappresenta un ciclo limite. La
sensibilita alle condizioni iniziali di un sistema lineare & generalmente bassa,
nel senso che piccole variazioni nelle condizioni iniziali portano a differenze
proporzionalmente piccole nel comportamento a lungo termine del sistema.
Dunque un sistema lineare, a qualunque numero di dimensioni, non potra
mostrare comportamenti caotici e neanche biforcazioni (vedi piu avanti...)

espansione in serie di Taylor).




Ex.2 LA GLICOLISI

In the fundamental biochemical process called glycolysis, living cells obtain en-
ergy by breaking down sugar. In intact yeast cells as well as in yeast or muscle ex-
tracts, glycolysis can proceed in an oscillatory fashion, with the concentrations of
various intermediates waxing and waning with a period of several minutes. For re-
views, see Chance et al. (1973) or Goldbeter (1980).

A simple model of these oscillations has been proposed by Sel’kov (1968) In
dimensionless form, the equations are

. 2 H H AUP H 4 H
xX=-x+ay+x L K Y =
) d 7 Valori tipici: a=0.08, b=0.6 oN"_/on  ssoonas Q“‘

y=b—ay—x2y H o OH H O

Glucosio Glucosio-6-fosfato

where x and y are the concentrations of ADP (adenosine diphosphate) and F6P
(fructose-6-phosphate), and a,b >0 are kinetic parameters.

.. 12 | i 1 || | ]
Esercizio:

Esplorare il modello sia | — .
analiticamente che con _
Iaiuto di NetLogo 08 | = . - i, 5
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3.17 Bifurcation Theory (vale per Flussi e Mappe)

We have seen that the characteristic values associated with a fixed point depend on
the various parameters used to describe the system. As the parameters change, for
example as we adjust a voltage in a circuit or the concentration of chemicals in a
reactor, the nature of the characteristic values and hence the character of the fixed
point may change. For example, an attracting node may become a repellor or a
saddle point. The study of how the character of fixed points (and other types of
state space attractors) change as parameters of the system change is called

bifurcation theory. (Recall that the term bifurcation is used to describe any sudden
change in the dynamics of the system. When a fixed point changes character as
parameter values change, the behavior of trajectories in the neighborhood of that
fixed point will change. Hence the term bifurcation is appropriate here.) Being able
to classify and understand the various possible bifurcations is an important part of
the study of nonlinear dynamics. However, the theory, as it is presently developed,
is rather limited in its ability to predict the kinds of bifurcations that will occur and
the parameter values at which the bifurcations take place for a particular system.
Description, however, is the first step toward comprehension and understanding.
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We should also emphasize that simple bifurcation theory treats only
the changes in stability of a particular attractor (or, as we shall see in Chapter 4, a
particular basin of attraction). Since in general a system may have, for fixed
parameter values, several attractors in different parts of state space, we often need
to consider the overall dynamical system (that is, its “global” properties) to see
what happens to trajectories when a bifurcation occurs.

To keep track of what is happening as the control parameter is varied, we will
use two types of diagrams. One type, which we have seen before, is the bifurcation
1 diagram, in which we plot the location of the fixed point (or points) as a function of
the control parameter. In the second type of diagram, we plot the characteristic
values of the fixed point as a function of the control parameter. -

To see how this kind of analysis proceeds, let us begin with the one-
dimensional state space case. In a one-dimensional state space, a fixed point has | EX.
just one characteristic value A. The crucial assumption in the analysis is that A | Flussi
varies smoothly (continuously) as some parameter, call it 4, varies. For example, if | Dissip.
A(p) < 0 for some value of u, then the fixed point is a node. As uchanges, A might | 1
increase (become less negative), going through zero, and then become posmve
The node then changes to a repellor when A > 0.
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Let us consider a specific example: /

Flusso dissipativo a una dimensione | %= p—x*

Biforcazioni in 1D

(3.17-3)

For ; positive, there are two fixed points: one at x = +J;_4 , the other at x = -J; ;

For| u negative |there are no fixed points (assuming, of course, that x is a real ; _ (X )i
number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |xax,

point, to find the characteristic value of the two fixed points (for u > 0), we see that 4 (x)
the fixed point at x = - is a repellor, while the fixed point at x=+Ju isa dx

node.

=-2x

A1) <0
M=) >0

u>0
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Biforcazioni in 1D

parameter

Let us consider a specific example: /

Flusso a una dimensione x= U - x* (3.17-3)

For ; positive, there are two fixed points: one at x = +J;_4 , the other at x = -J; ;

For| u negative there are no fixed points (assuming, of course, that x is a real ; _ éfﬂi

number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |x.x

point, to find the characteristic value of the two fixed points (for u > 0), we see that d4r(x) 5

the fixed point at x = - is a repellor, while the fixed point at x =+Ju isa dx

node. A1) <0
If we start with i < 0 and let it increase, we find that a bifurcation takes place

at 4= 0. At that value of the parameter we have a saddle point, which then changes M) >0

into a repellor-node pair as 4 becomes positive. We say that we have a repellor-
node bifurcation at yi = 0.

©w<0 u=0 u>0

BIFORCAZIONE! T

lEP.ELyJR/\NQDE

o w |

PR




Biforcazioni in 1D

parameter
Let us consider a specific example: /
Flusso a una dimensione x= U - x* (3.17-3)

For ﬁ positive, there are two fixed points: one at x = +J;_4 , the other at x = -J; ;

For| u negative there are no fixed points (assuming, of course, that x is a real ; _ éfﬂ‘

number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |x.x

point, to find the characteristic value of the two fixed points (for u > 0), we see that d4r(x) >

the fixed point at x = - is a repellor, while the fixed point at x =+Ju isa dx

node. A1) <0
If we start with i < 0 and let it increase, we find that a bifurcation takes place

at 4= 0. At that value of the parameter we have a saddle point, which then changes M) >0

into a repellor-node pair as u becomes positive. We say that we have a repellor-

node bifurcation at yi = 0.

Fig. 3.14. The bifurcation diagram for the repellor-node (saddle-node) bifurcation. The solid
line indicates the x value for the node as a function of the parameter value. The dashed line is
for the repellor. Note that there is no fixed point at all for < 0. =0

l u<0 4 1 o '\
/f\ bifurcation point /7

Nota: Note that at the repellor-node bifurcation point, the fixed point of the
system is structurally unstable in the sense discussed in Section 3.6. Structurally e
unstable points are important because their existence indicates a possible S~ _
bifurcation. T




In the nonlinear dynamics literature, the bifurcation just described is usually
called a saddle-node bifurcation, tangent bifurcation, or a fold bifurcation. The
origin of these names will become apparem when we see analogous bifurcations in
higher-dimensional state spaces. For example, if we imagine the curves in Fig.
3.14 as being the cross section of a piece of paper extending into and out of the
plane of the page, then the bifurcation point represents a “fold” in the piece of
paper. Also, Fig. 3.5 shows how the function in question becomes tangent to the x
axis at the bifurcation point.

AX) No Fixed Point

@ U
X % fX) | Saddle Point

> u % £X) Repellor
X (c) \f\_} x/

Node

Fig. 3.5. In one-dimensional state spaces, a saddle point, the point X, in (b), is structurally
unstable. A small change in the function f{X), for example pushing it up or down along the
vertical axis, either removes the fixed point (a), or changes it into a node and a repellor (¢).



Biforcazioni in 2D

Limit Cycle Bifurcations
As we saw earlier, a fixed point in a two-dimensional state space may also have
complex-valued characteristic values for which the trajectories have spiral-type
behavior. A bifurcation occurs when the characteristic values move from the left-
hand side of the complex plane to the right-hand side; that is, the bifurcation occurs
when the real part of the characteristic value goes to 0.

We can also have limit cycle behavior in two-dimensional systems. The birth
and death of a limit cycle are bifurcation events. The birth of a stable limit cycle is

s called a Hopf bifurcation (named after the mathematician E. Hopf). (Although this

type of bifurcation was known and understood by Poincaré and later studied by the
Russian mathematician A. D. Andronov in the 1930s, Hopf was the first to extend
these ideas to higher-dimensional state spaces.) Since we can use a Poincaré
section to study a limit cycle and since for a two-dimensional state space, the
Poincaré section is just a line segment, the bifurcations of limit cycles can be
studied by the same methods used for studying bifurcations of one-dimensional
dynamical systems.

A Hopf bifurcation can be modeled using the following normal form
equations:
. 2 2
Flusso dissipativo i e e Sl
a due dimensioni |
X, =+x 4+ x,{u-(x +x3)) (3.17-5b)
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X o= =x +x{u=(x +x3)) (3.17-5a) Esiste chiaramente
un punto fisso

X, =4x +x,(u—-(x' +x3)) (3.17-5b) nell’origine...

The geometric form of the trajectories is clearer if we change from (x), xp)

coordinates to polar coordinates (r,6) defined in the following equations and

illustrated in Fig. 3.18.
Distanza dal punto
s / %ol
r=qyE+x) fisso nell’'origine

(3.17-6)
tan@ = 2
X,
Using these polar coordinates, we write Egs. (3.17-5) as
F=r{p-r?) = f(r) cubica (3.17-7a)
6=1 —> 0(t)=0, +t (3.17-7b)
* Fig. 3.18. The definition of polar coordinates. r is
X2 y the length of the radius vector from the origin. 0 is
the angle between the radius vector and the positive
X axis.
0
X




Now let us interpret the geometric nature of the trajectories that follow from
Egs. (3.17-7). The solution to Eq. (3.17-7b) is simply

0(1)=6, +1 . (3.17-8)

that is, the angle continues to increase with time as the trajectory spirals around the
origin. For|u < 0, there is just one fixed point for r, namely r = 0. By evaluating
the derivative of f{r) with respect to r at r = 0, we see that the characteristic value is
equal to y. Thus, for u < 0, that derivative is negative, and the fixed point is stable.
In fact, it is a spiral node.

Fig. 3.19. X, F=r{p-r*)= f(r)

firy i H spiral node 6=1

u<0 l




Now let us interpret the geometric nature of the trajectories that follow from
Egs. (3.17-7). The solution to Eq. (3.17-7b) is simply

0(1)=6, +1 . (3.17-8)

that is, the angle continues to increase with time as the trajectory spirals around the
origin. For|u < 0, there is just one fixed point for r, namely r = 0. By evaluating
the derivative of f{r) with respect to r at r = 0, we see that the characteristic value is
equal to y. Thus, for u < 0, that derivative is negative, and the fixed point is stable.
In fact, it is a spiral node.

For|u > 0/ the fixed point at the origin is a spiral repellor; it is unstable;
trajectories starting near the origin spiral away from it. There is, however, another
fixed point for r, namely, r = \/;I :

F%30190 Xz '-'=I'[ﬂ—r2}!f(r)
spiral
f(ry 5i<0]| spiral node repellor 6=1
g
T l / R Y
U EHEE
A / A T \
X La soluzione 1 = — /i si esclude /
I perché r ¢ la distanza dall’origine nRg | \
quindi non puo essere negativa




Now let us interpret the geometric nature of the trajectories that follow from
Eqgs. (3.17-7). The solution to Eq. (3.17-7b) is simply

(1) =6, +1 . (3.17-8)

that is, the angle continues to increase with time as the trajectory spirals around the
origin. For|u < 0, there is just one fixed point for r, namely r = 0. By evaluating
the derivative of f{r) with respect to r at r = 0, we see that the characteristic value is
equal to y. Thus, for u < 0, that derivative is negative, and the fixed point is stable.
In fact, it is a spiral node.

For|u > 0/ the fixed point at the origin is a spiral repellor; it is unstable;
trajectories starting near the origin spiral away from it. There is, however, another
fixed point for r, namely, r = J;I This fixed point for r corresponds to a limit
cycle with a period of 27 [in the time units of Egs. (3.17-7)]. We say that the limit
cycle is born at the bifurcation value u = 0. Fig. 3.19 shows the bifurcation

diagram for the Hopf bifurcation.
T X, limit cycle F=rip-r*}= f(r)
spiral
\f(r)’ m H spiral node repellor 6=1
B l f(')z M >‘0‘
u ] ,/\
\\
X, Hopf \
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Biforcazioni e Strutture Dissipative

Sequenza di biforcazioni nei sistemi lontani dall’equilibrio
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Classificazione dei Sistemi Dinamici

X = f(X) Zpt1 = f(Tn)

’ 4

Flussi Dissipativi

|

Attrattori

1D

p 2D
unto 3D

fisso  cCiclo

Limite Caotici



Flussi dissipativi
in
tre dimensioni

Cluster di
condizioni iniziali

1dV &of
—— —_ = d" < 0
\\ Vi %o v(f)
|
:
\\ 1 -
- \‘\\‘ fixed points (dim.0)
SO - \\ \\\‘
R limit cycles (dim.1)

ATTRATTORI -+
quasiperiodic attractors (dim.2)

chaotic attractors (dim...???)




Flussi dissipativi
in
tre dimensioni

Cluster di
condizioni iniziali

1dV &of
—— —_ = d" < 0
\\ Vi %o v(f)
|
:
\\ 1 -
- \‘\\‘ fixed points (dim.0)
SO - \\ \\\‘
R limit cycles (dim.1)

ATTRATTORI -+
quasiperiodic attractors (dim.2)

chaotic attractors (fractal dimension between 2 and 3)




4

Three-Dimensional State Space and Chaos

4.1 Overview

In the previous chapter, we introduced some of the standard methods for analyzing
dynamical systems described by systems of ordinary differential equations, but we
limited the discussion to state spaces with one or two dimensions. We are now
ready to take the important step to three dimensions. This is a crucial step, not
because we live in a three-dimensional world (remember that we are talking about
state space, not physical space), but because in three dimensions dynamical systems
can behave in ways that are not possible in one or two dimensions. Foremost
among these new possibilities is|chaos.

First we will give a hand-waving argument (we could call it heuristic if we
wanted to sound more sophisticated) that shows why chaotic behavior may occur in
three dimensions. We will then discuss, in parallel with the treatment of the
previous chapter, a classification of the types of fixed points that occur in three

dimensions. However, we gradually wean ourselves from the standard analytic

techniques and begin to rely more and more on graphic and geometrical
(topological) arguments. This change reflects the flavor of current developments in
dynamical systems theory. In fact, the main goal of this chapter is to develop
geometrical pictures of trajectories, attractors, and bifurcations in three-dimensional
state spaces.



4.2 Heuristics

We will describe, in a rather loose way, why three (or more) state space dimensions
are needed to have chaotic behavior. First, we should remind ourselves that we are
dealing with dissipative systems whose trajectories eventually approach an
attractor. For the moment we are concerned only with the trajectories that have
settled into the attracting region of state space. When we write about the divergence
of nearby trajectories, we are concerned with the behavior of trajectories within the
attracting region of state space.

In a somewhat different context we will need to consider sensitive
dependence on initial conditions. Initial conditions that are not, in general, part of
an attractor can lead to very different long-term behaviors on different attractors.
Those behaviors, determined by the nature of the attractor (or attractors), might be
time-independent or periodic or chaotic.

As we saw in Chapter 1, chaotic behavior is characterized by the divergence
of nearby trajectories in state space. As a function of time, the “separation”
(suitably defined) between two nearby trajectories increases exponentially, at least
for short times. The last restriction is necessary because we are concerned with

systems whose trajectories stay within some bounded region of state space. The
system does not “blow up.” There are three requirements for chaotic behavior in
such a situation:

1. no intersection of different trajectories;
2. bounded trajectories;
3. exponential divergence of nearby trajectories.



These conditions cannot be satisfied simultaneously in one- or two-
dimensional state spaces. You should convince yourself that this is true by
sketching some trajectories in a two-dimensional state space on a sheet of paper.
However, in three dimensions, initially nearby trajectories can continue to diverge
by wrapping over and under each other. Obviously sketching three-dimensional
trajectories is more difficult. You might try using some relatively stiff wire to form
some trajectories in three dimensions to show that all three requirements for chaotic
behavior can be met. You should quickly discover that these requirements lead to
trajectories that initially diverge, then curve back through the state space, forming
in the process an intricate layered structure. Figure 4.1 is a sketch of diverging
trajectories in a three-dimensional state space.

Fig. 4.1, A sketch of trajectories in a three-dimensional state space. Notice how two nearby
trajectories can continue to behave quite differently from each other yet remain bounded by
weaving in and out and over and under each other.



The notion of exponential divergence of nearby trajectories is made formal by
introducing the Lyapunov exponent. If two nearby trajectories on a chaotic
attractor start off with a separation d, at time ¢ = 0, then the trajectories diverge so
that their separation at time #, denoted by d(r), satisfies the expression

d(t) = d,e” (4.2-1)

The parameter A in Eq. (4.2-1) is called the Lyapunov exponent for the
trajectories. If A is positive, then we say the behavior is chaotic. (Section 4.13
takes up the question of Lyapunov exponents in more detail.) From this definition
of chaotic behavior, we see that chaos is a property of a collection of trajectories.

Fig. 4.1, A sketch of trajectories in a three-dimensional state space. Notice how two nearby
trajectories can continue to behave quite differently from each other yet remain bounded by
weaving in and out and over and under each other.



Chaos, however, also appears in the behavior of a single trajectory. As the
trajectory wanders through the (chaotic) attractor in state space, it will eventually
return near some point it previously visited. (Of course, it cannot return exactly to
that point. If it did, then the trajectory would be periodic.) If the trajectories exhibit
exponential divergence, then the trajectory on its second visit to a particular
neighborhood will have subsequent behavior, quite different from its behavior on

the first visit. Thus, the impression of the time record of this behavior will be one of

nonreproducibility, nonperiodicity, in short, of chaos.

EFFETTO
FARFALLA!




The crucial feature of state space with three or more dimensions that permits
chaotic behavior is the ability of trajectories to remain within some bounded region
by intertwining and wrapping around each other (without intersecting!) and without
repeating themselves exactly. Clearly the geometry associated with such
trajectories is going to be strange. In fact, such attractors are now called strange
attractors. In Chapter 9, we will give a more precise definition of a strange
attractor in terms of the notion of fractal dimension. If the behavior on the attractor
is chaotic, that is, if the trajectories on the attractor display exponential divergence
of nearby trajectories (on the average), then we say the attractor is chaotic. Many
authors use the terms strange attractor and chaotic attractor interchangeably, but
in principle they are distinct [GOP84].
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4.4 Three-Dimensional Dynamical Systems

We will now introduce some of the formalism for the description of a dynamical
system with three state variables. We call a dynamical system three-dimensional if
it has three independent dynamical variables, the values of which at a given instant
of time uniquely specify the state of the system. We assume that we can write the
time-evolution equations for the system in the form of the standard set of first-order
ordinary differential equations. (Dynamical systems modeled by iterated map
functions will be discussed in Chapter 5.) Here we will use x with a subscript 1, 2,
or 3 to identify the variables. This formalism can then easily be generalized to any
number of dimensions simply by increasing the numerical range of the subscripts.
The differential equations take the form

P i = £
Y=-XZ+rX - = % = H(0,x,x) (4.4-1)
Z=XY-bZ X = fi(x,%,%)

The Lorenz model equations of Chapter 1 are of this form. Note that the three
functions f,, f;, and f; do not involve time explicitly; again, we say that the system
IS autonomous.

As an aside, we note that some authors like to use a symbolic “vector” form to
write the system of equations:

x = f(¥) (4.4-2)

Here x stands for the three symbols x,,x, x, , and f stands for the three functions
on the right-hand side of Egs. (4.4-1).



The differential equations describing two-dimensional systems subject to a

time-dependent “force” (and hence nonautonomous) can also be written in the form
of Eq. (4.4-1) by making use of the “trick” introduced in Chapter 3: Suppose that
the two-dimensional system is described by equations of the form

X = f,(x,x,,1)

: (4.4-3)
xz - fz(xl oxzot)

The trick is to introduce a third variable, x3=t. The three “autonomous” equations

then become

X = fi(%.%,%)
X = [,(x,%5,%) (4.4-4)
x =1

which are of the same form as Eq. (4.4-1). As we shall see, this trick is particularly
useful when the time-dependent term is periodic in time.

Exercise 4.4-1. The “forced” van der Pol equation is used to describe an
electronic triode tube circuit subject to a periodic electrical signal. The
equation for g(z), the charge oscillating in the circuit, can be put in the
form

d*q dq A

—dt_2+Y(q)§;+q(’) = gsinwt

Use the trick introduced earlier to write this equation in the standard form
of Eq. (4.4-1).




4.5 Fixed Points in Three Dimensions (dim = 0)

The fixed points of the system of Egs. (4.4-1) are found, of course, by setting the
three time derivatives equal to 0. [Two-dimensional forced systems, even if written
in the three-dimensional form (4.4-4), do not have any fixed points because, as the
last of Eqgs. (4.4-4) shows, we never have x; =¢=0 . Thus, we will need other
techniques to deal with them.] The nature of each of the fixed points is determined
by the three characteristic values of the Jacobian matrix of partial derivatives
evaluated at the fixed point in question. The Jacobian matrix is

(o o o)
dx, OJx, Ox,
% % % :
J 5 e 4.5-1)
of, 9 I
| dx, Odx, Ox )

In finding the characteristic values of this matrix, we will generally have a cubic
equation, whose roots will be the three characteristic values labeled A,,4,,4; .




Some mathematical details: The standard theory of cubic equations tells us
that a cubic equation of the form

A+ pAt+gAi+r=0

can be changed to the “standard” form

by the use of the substitutions

If we now introduce

X +ax+b=0

x=A+p/3

1

=—(3g - p?
a 3(4 p°)

|
b=—@2p®-9gp+27r
27( p qp )

} ;
A=(-b/2+s)

|
B =(-b/2-s)

4.5-2)

(4.5-3)

(4.5-4)

(4.5-5)



the three roots of the x equation can be written as

A =
A, =

2, =

1
-(

A+B)

2

A+B)

2

A+ B

/

/

-+

i
(A-B)

(A-B)

- 2 |

J-3
J-3

(4.5-6)

from which the characteristic values for the matrix can be found by working back
through the set of substitutions. Most readers will be greatly relieved to know that
we will not make explicit use of these equations. But it is important to know the

form of the solutions.
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the three roots of the x equation can be written as

A = A+B
\ fA-B)
A= <pSTTNAAE) S (4.5-6)
2 )\ 2
\ (A-B)
A, = _A+B_A_B_J:3-
2)k2)

from which the characteristic values for the matrix can be found by working back
through the set of substitutions. Most readers will be greatly relieved to know that
we will not make explicit use of these equations. But it is important to know the
form of the solutions.

There are three cases to consider:

“standard” form L.
X’ +ax+b=0 |2

The three characteristic values are real and unequal (s < 0).

. The three characteristic values are real and at least two are equal (s =
~ 0).
don i + ﬂf_ 3. There is one real characteristic value and two complex conjugate
4: 21 values (s > 0).

Case 2 is just a borderline case and need not be treated separately.



Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

The four basic types of fixed points for a three-dimensional state space are:

(1.) Node. All the characteristic values are real and negative. All trajectories in the
neighborhood of the node are attracted toward the fixed point without looping
around the fixed point.

Is. Spiral Node. All the characteristic values have negative real parts but two

of them have nonzero imaginary parts (and in fact form a complex
conjugate pair). The trajectories spiral around the node on a “surface™ as

they approach the node.
Equazione caratteristica: * / I
3 2 The three characteristic values are
A+pA +gA+r=0 —/’,;‘”‘ Node real and unequal (s < 0).
e o

“standard” form R

X’ +ax+b=0
I

and two complex conjugate values (s > 0).

\A@ Spiral Node There is one real characteristic value
( 8 )
=] — e c— .
_‘

b R



Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

The four basic types of fixed points for a three-dimensional state space are:

Repellor. All the characteristic values are real and positive. All trajectories in

the neighborhood of the repellor diverge from the repellor.

2s. Spiral Repellor. All the characteristic values have positive real parts, but
two of them have nonzero imaginary parts (and in fact form a complex
conjugate pair). Trajectories spiral around the repellor (on a “surface™) as
they are repelled from the fixed point.

Equazione caratteristica: T/' [
3 2 The three characteristic values are
A+pAi+gA+r=0 <«— e ~—p Repellor real and unequal (s < 0).

of

"
“standard” form R
xX’+ax+b=0 I
W : There is one real characteristic value
:‘) Spiral Repellor and two complex conjugate values (s > 0).
A i
= —— — — *
4 27 .
1 R




Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

For state spaces with three or more dimensions, it is common to specify the
so-called index of a fixed point.

The index of a fixed point is defined to be the number of characteristic
values of that fixed point whose real parts are positive.

In more geometric terms, the index is equal to the spatial dimension of the out-set
of that fixed point. For a node (which does not have an out-set), the index is equal
to 0. For a repellor, the index is equal to 3 for a three-dimensional state space. A
saddle point can have either an index of 1, if the out-set is a curve, or an index of 2,
if the out-set is a surface as shown in Fig. 4.3.

Index=0 Index =3

—bi‘q/— Node < ‘/'$ Repellor
~t




Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

Saddle point — index-1. All characteristic values are real. One is positive
and two are negative. Trajectories approach the saddle point on a surface (the

in-set) and diverge along a curve (the out-set).

3s. Spiral Saddle Point — index—I. The two characteristic values with
negative real parts form a complex conjugate pair. Trajectories spiral
around the saddle point as they approach on the in-set surface.
Saddle point — index-2. All characteristic values are real. Two are positive
and one is negative. Trajectories approach the saddle point on a curve (the in-
set) and diverge from the saddle point on a surface (the out-set).
4s. Spiral Saddle Point — index-2. The two characteristic values with
positive real parts form a complex conjugate pair. Trajectories spiral
around the saddle point on a surface (the out-set) as they diverge from the
saddle point.
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