Classificazione dei Sistemi Dinamici
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Riepilogo dei Punti Fissi in uno Spazio degli Stati a Una Dimensione
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Riepilogo dei Punti Fissi in uno Spazio degli Stati a Una Dimensione
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X, = fi(X,.X,)
(; = f(X,.X,)
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Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

i| =.ﬂ{x5-x1] f;(xlo'xh):o
X.=fAX..Xa) fi( X X3,) =0

—) FIXED POINTS

PER CIASCUN PUNTO FIssO (X, 6 X,,) :

. )
X, =X, X,)=(X,-X,,))=— J, +(X,-X,,)— afl (3.11-4a)
0X, oX 2 =Y -X
DISTANZA DELLA TRAIETTORIA \ DISTANZA DELLA TRAIETTORIA xl 1 1o
DAL PUNTO FISSO LUNGO L'ASSE X, \ / DAL PUNTO FISSO LUNGO L'ASSE X, 2 - X2 - X2
a o
X = (X, X,) =(X, - X,o)a fz +... (3.11-4b)
l 2

and ignoring all the higher-order derivative terms, we may write Eq. (3.11-4) as

Equazioni X = ix; e f soluzioni particolari
linearizzate _| ox, a-"?z - = CeM
attorno al _ afz afz hE=iee
punto fisso ey

_ " dx, Ox,




Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

"il = fi(X,
j-rz = f,(X,.X,)

X

-fl(xlo'xh) =0
LH(X,,.X5,)=0

=) FIXED POINTS

PER CIASCUN PUNTO FIssO (X, 6 X,,) :

Equazione Caratteristica

A =(fu+ f2)A+(firfys = fiafu) =0 con f, =

9
ox f

We call Eq. (3.11-11) the characteristic equation for A, whose value depends only
on the derivatives of the time evolution functions evaluated at the fixed point. Eg.
(3.11-11) is a quadratic equation for A and in general has two solutions, which we
can write down from the standard quadratic formula:
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Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

-fi| =f;|,'[xg-x1] .ﬂ(xlo'XZo):O
X.=fAX..Xa) fi( X X3,) =0

=) FIXED POINTS

PER CIASCUN PUNTO FIssO (X, 6 X,,) :

A =(fu+ f2)A+(firfys = fiafu) =0 con f, =

Equazione Caratteristica
%
ox,

We call Eq. (3.11-11) the characteristic equation for A, whose value depends only
on the derivatives of the time evolution functions evaluated at the fixed point. Eg.
(3.11-11) is a quadratic equation for A and in general has two solutions, which we
can write down from the standard quadratic formula:
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Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

-fi| =f1{xj-xj] .,;(Xlo'XZo):O
X.=fAX..Xa) fi( X X3,) =0

=) FIXED POINTS

PER CIASCUN PUNTO FIssO (X, 6 X,,) :

Equazione Caratteristica

9,
2 e
A=+ A+ Uifa = fafa)=0  con fy=2t
J
Le distanze del punto rappresentativo del sistema dal
punto fisso lungo i due assi dello spazio degli stati
spiraleggiano nei dintorni del punto:
f12%2(0)
— Rt A ~ =2 2 Z
: x,(£) = Fe™' sinWt Fp~=—5
/1: = RtiQ2 con:
_ I 21%1(0)

x, (1) = F,e|" sinWt
l T

1
. " R=—{fu+fu}
2 Q:%A{ﬁﬁfﬂ}l-4{f1|f12-f12f11]'

R<0: spiral node  R<O0: spiral repellor



Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

i| =.ﬂ{x5-x1] f;(xlo'xh):o
X.=fAX..Xa) fi( X X3,) =0

—) FIXED POINTS

PER CIASCUN PUNTO FIssO (X, 6 X,,) :

Equazione Caratteristica

)
-Gt A+ i fuf) =0 oon fy=L
J
Le distanze del punto rappresentativo del sistema dal
punto fisso lungo i due assi dello spazio degli stati
spiraleggiano nei dintorni del punto:
ey x,(£) = Ee™ sinWt Ma cosa succede
= i
x, () = F,e™ sinWt nel caso R =07
Nasce un
. . CICLO LIMITE
‘ attorno al R=0
punto fisso!

R<0: spiral node  R>0: spiral repellor



Metodo dello Jacobiano per studiare i punti fissi nel caso generale a 2 dim.

Equazioni linearizzate nelle vicinanze
di un dato punto fisso ( X;,,X5, )

Equazioni originarie Distanze dal
? : xl = af; x, + aﬁ 3 punto fisso
X, = fi(X,.X,) |—) ax, ' ox, ¥ [n=x-x,
. ...ricavare with fﬂ ==L
Xy = hH(X,.X2) | i puntifissi... . _of of, d, |x,=X-X,
Ky ===ty +m=eX, ...calcolate nel
al-‘:l axz punto fisso

3.14 The Jacobian Matrix for Characteristic Values

We would now like to introduce a more elegant and general method of finding the
characteristic equation for a fixed point. This method makes use of the so-called
Jacobian matrix of the derivatives of the time evolution functions. Once we see
how this procedure works, it will be easy to generalize the method, at least in
principle, to find characteristic values for fixed points in state spaces of any
dimension. The Jacobian matrix for the system is defined to be the following
square array of the derivatives:

Autovalori

Matrice Jacobiana Jz(f” f”) => l.1 (3.14-1)

o fa

where the derivatives are evaluated at the fixed point. We subtract A from each of
the principal diagonal (upper left to lower right) elements and set the determinant of
the matrix equal to O:




Metodo dello Jacobiano per studiare i punti fissi nel caso generale a 2 dim.

Eq. agli autovalori

il f
(fu fa — TN 2 '=0
J_[fz: fn] JVv=W|—>det(J-A)=0 — fu fn = A
Equazione caratteristica dello Jacobiano
}
.ﬂ.l-{_,f”+fu}ﬂ.+(f;,_ﬁ=-_f];_,ﬂ,)=ﬂ (3.11-11)
Autovalori e J 7
dello|—s 4, = Jut Sa 2+ ) 4 fiiSn — fufu) (3.11-12)
Jacobiano 2

Multiplying out the determinant in the usual way then yields the characteristic
equation (3.11-11). The Jacobian matrix method is obviously easily extended to d-
dimensions by writing down the d-by-d matrix of derivatives of the d time-
evolution functions f,, forming the corresponding determinant, and then (at least in
principle) solving the resulting dth order equation for the characteristic values.

We now introduce some terminology from linear algebra to make some very
general and very powerful statements about the characteristic values for a given

fixed point.




I Reminder: condizione affinche un
* cluster di condizioni iniziali collassisu  y _ fu Sa
un attrattore stabile: 1 .
| 1 dA
Xap | i ——=(fu+fu)c0 — [TrJ <0
| | A dt
XIB XlC XI
First, the frace of a matrix, such as the Jacobian matrix (3.14-1), is
%= R defined to be the sum of the principal diagonal elements. For Eq. (3.14-1) this is
+ = 5 -
explicitly Traccia dello Jacobiano
A+ =RtiQ T l=f +F, (3.14-3)

x,() = Fe®sinwy  According to Eq. (3.13-5), however, this is just the combination of derivatives

x,(f) = Fe™ sinWr needed to test whether or not the system’s trajectories collapse toward an attractor.
To make a connection with the previous section, we note that TrJ/ = 2R, so that we

see that the sign of 7r/ determines whether the fixed point is a node or a repellor.

R=%[fu+fn]



Reminder: condizione affinche un
cluster di condizioni iniziali collassi su J :[fu Ju ]

un attrattore stabile: fa fa
1 dA

——== (fut fu)<0 — [T <0

P

Autovettori
dello
Jacobiano

\

l}l*"“/
\Vz

%
ry

2

‘ ¥
XIB X!C I

First, the frace of a matrix, such as the Jacobian matrix (3.14-1), is
defined to be the sum of the principal diagonal elements. For Eq. (3.14-1) this is

explicitly Traccia dello Jacobiano
Trl = fi1+ fa G.143)

According to Eq. (3.13-5), however, this is just the combination of derivatives
needed to test whether or not the system’s trajectories collapse toward an attractor.
To make a connection with the previous section, we note that Tr/ = 2R, so that we
see that the sign of 7r/ determines whether the fixed point is a node or a repellor.

Linear algebra also tells us how to find the directions to be associated with the
characteristic values.

In linear algebra this procedure is called “finding the eigenvalues and
eigenvectors of the matrix.” For our purposes, the eigenvalues are the characteristic
values of the fixed point and the eigenvectors give the associated characteristic
directions. However, we will not need these eigenvectors for most of our purposes.
The interested reader is referred to the books on linear algebra listed at the end of

the chapter.




fi o
J' =
%)
We now introduce one more symbol:

Determinante dello Jacobiano: A = f, f,, = f,, fi (3.14-6)

A is called the determinant of that matrix. Then we may show that the nature of
the fixed point is determined by 7rJ and A as listed in Table 3.3.

= Jut fa i'\l(fu + fu)! =4S S = fiaf) _ TI’Ji\/(TrJ)2 - 4D

—> I,
A, > ; 5
A:t=RtiQ
x, () = Fe™ sinWt _ Table 3.3
. Fixed Points for Two-dimensional State Space
x,(1) = Fye™ sinWe | TrJ <0 TrJ >0
) A>(1/4XTrJ 'S spiral node spiral repellor
r=lr; 0<A < (1/4)TrJ) node repellor
) A<0 saddle point saddle point
W = %\/TrJZ - 4D

—



Riepilogo dei Punti Fissi in uno Spazio degli Stati a Due Dimensioni
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Diagramma dei Punti Fissi in uno Spazio degli Stati a Due Dimensioni
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Summary of Fixed Point Analysis for Two-dimensional State Space

1.

Write the time evolution equations in the first-order time derivative form of
Eq. (3.10-1).

X, = fi(X,X
) LX), X,) (3.10-1)
X, = [(X,,X;)

Find the fixed points of the evolution by finding those points that satisfy
_ﬁ(xl.xljzﬂ
[(X,,X,)=0

At the fixed points, evaluate the partial derivatives of the time evolution
functions to set up the Jacobian matrix

fo
J= 3.14-1
{fl. fuJ e

Evaluate the trace and determinant of the Jacobian matrix at the fixed point and

use Table 3.3 to find the type of fixed point.
Use Eq. (3.11-12) to find the numerical values of the characteristic values and

to specify the behavior of the state-space trajectories near the fixed point with
Eq. (3.11-13).
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Matrices & Li'near A]gebra compute the determinant of a matrix

determinant of {{3,4}.{2,1}}

» PRO: Data Input Matrix Arithmetic det({{9, 3, 5}, {-6. -9, 7}, {-1,-8, 1}})

» PRO: Image Input
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compute the LU decomposition of a square matrix
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6.4 Rabbits versus Sheep

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Velterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:
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6.4 Rabbits versus Sheep

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Velterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:

I. Each species would grow o its carrying capacity in the absence of the
other. This can be modeled by assuming logistic growth for each

A iment

Malthasiono —3 species (recall Section 2.3). Rabbits have a legendary ability to repro-
" B s duce. so perhaps we should assign them a higher intrinsic growth rate.

K = capacita >

di carico e "

=—Curva
logistica
. m— l‘_“°
- - 1 s 1o

Confronto tra curva logistica e curva di &2

accrescimento esponenziale
(malthusiano). | parametri sono:
k= lO,N0 =1lr=1
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6.4 Rabbits versus Sheep

In the next few sections we’ll consider some simple examples of phase plane
analysis. We begin with the classic Lotka-Velterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:

.
s

~+. 1. Each species would grow 1o its carrying capacity in the absence of the
other. This can be modeled by assuming logistic growth for each
species (recall Section 2.3). Rabbits have a legendary ability to repro-
duce. so perhaps we should assign them a higher intrinsic growth rate.

2. When rabbits and sheep encounter each other, trouble starts. Some-
times the rabbit gets to eat, but more usually the sheep nudges the
rabbit aside and starts nibbling (on the grass, that is). We’ll assume
that these conflicts occur at a rate proportional to the size of each
population. (If there were twice as many sheep, the odds of a rabbit
encountering a sheep would be twice as great.) Furthermore, we as-
sume that the conflicts reduce the growth rate for each species, but
the effect is more severe for the rabbits.




x=0—-x=0

A specific model that incorporates these assumptions is §=2y(01-2)
- 2

{rlﬂ [b=1l,a=K =2]
R —— s

where
x(t) = population of rabbits, Shee
Rabbit y(t) = population of sheep P
y=0—>y=0 and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-_
. X erwise arbitrary. In the exercises, you'll be asked to study what happens if the co-
x=3x(1- 5) efficients are changed.

[b=1,a=K =3] . Each species would grow 1o its carrying capacity in the absence of the
" . other. This can be modeled by assuming logistic growth for each
Malthusiano ——3 species (recall Section 2.3). Rabbits have a legendary ability to repro-

sl duce, so perhaps we should assign them a higher intrinsic growth rate,

Nl K= capacita ~

di carico — . T e . Thaam o - : _—
2. When rabbits and sheep encounter each other, trouble starts. Some-
/ =—Curva

/ logistica times the rabbit gets to eat, but more usually the sheep nudges the
/ rabbit aside and starts nibbling (on the grass, that is). We’ll assume
= R that these conflicts occur at a rate proportional to the size of each

- « ¢ ’ N population. (If there were twice as many sheep, the odds of a rabbit

dN N encountering a sheep would be twice as great.) Furthermore, we as-
— =alN (1 - —) sume that the conflicts reduce the growth rate for each species, but
the effect is more severe for the rabbits.




x=0—x=0
A specific model that incorporates these assumptions is §=2y(1 - Y )
_ - 2
*=x0-x2y) [b=1,a=K=2]
where U

x(t) = population of rabbits,

¥(1) = population of sheep Sheep

and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-_
erwise arbitrary. In the exercises, you'll be asked to study what happens if the co-
efficients are changed.

o
-~
oot

y=0—-y=0

X
t=3x(1-=
x =3x( 3)

-

I. Each species would grow 1o its carrying capacity in the absence of the

other. This can be modeled by assuming logistic growth for each
species (recall Section 2.3). Rabbits have a legendary ability to repro-

duce, so perhaps we should assign them a higher intrinsic growth rate.

2. When rabbits and sheep encounter each other, trouble starts. Some-
times the rabbit gets to eat, but more usually the sheep nudges the
rabbit aside and starts nibbling (on the grass, that is). We’ll assume
that these conflicts occur at a rate proportional to the size of each
population. (If there were twice as many sheep, the odds of a rabbit
encountering a sheep would be twice as great.) Furthermore, we as-
sume that the conflicts reduce the growth rate for each species, but
the effect is more severe for the rabbits.




x=0—->x=0
A specific model that incorporates these assumptions is 5= 2y(1 - y )
_ - 2
x=x(3—x-1y) (b=la=K=2]
where -4
x(t) = ulation of rabbits,
(1= pop ! 1 Sheep
y(t) = population of sheep
y=0—>y=0 and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-_
. X erwise arbitrary. In the exercises, you'll be asked to study what happens if the co-
x=3x(1- g) efficients are changed.
[b=1,a =K = 3]

To find the fixed points for the system, we solve x =0 and y=0 simultane-
ously. Four fixed points are obtained: (0,0}, (0,2}, (3,0), and (1,1).

Soiutions:
x=0, y=2
x=1, y=1
2% WolframAlpha
x=3, y=10
| x(3:x-24)=0, y(2xy)=0 8|
v=10, x=10

- E - B2y = Examples == Random



x=0—-x=0

A specific model that incorporates these assumptions is §=2y(1-2)
- 2

i=x(3-x-2y) [b=1,a=K =2]
5;:;,;(3-;-}-}‘\ ‘

x(t) = population of rabbits,

y(t) = population of sheep Sheep
y=0->y=0 and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-_
. X erwise arbitrary. In the exercises, you'll be asked to study what happens if the co-
x=3x(1- g) efficients are changed.

[b=1,a=K = 3]

To find the fixed points for the system, we solve x =0 and y=0 simultane-
ously. Four fixed points are obtained: (0,0}, (0,2), (3,0), and (1,1). To classify
them, we compute the Jacobian:

J =[‘?T: %]=(3'2I—1}‘ -2x ] Solutions:
% % -y 2=x-2y x=0, y=2
x=1, y=1
2% WolframAlpha o
x=3, y=
| x(3:x-24)=0, y(2xy)=0 8|
v=10, x=10

- E - B2y = Examples == Random



Now consider the four fixed points in turn:

3% WolframAlpha

30 | {3.0n0021 8|
ﬂ‘ﬂ : Thl: - . - = Examples =2 Random
(0.0) nJ [ 0 2] o=
The eigenvalues are A =3, 2 so0 ((,0) is an unstable node. Trajectories leave Cigenvalues. e
the origin parallel to the eigenvector for A = 2, i.e. tangential to - L 5
= vy =11,
’ v = (0,1), which spans the y-axis. (Recall the general rule: at a : !
v, node, trajectories are tangential to the slow eigendirection, 1z =12 va=(0,1)
. which is [h-::: eigendirection with the smallest |ﬂ_| .) Thus, the D=6>0
L - phase portrait near (0,0) looks like Figure 6.4.1. T =50
Figure 6.4.1
(TrJ)> -4D=1>0
TrJ)* 4A>0 - ﬂ.’ ,A_ reali e positivi
TrJ | - - - T =

unstable nodcs

/ 3 REPELLORS
0' S 3




#Wolframﬂlpha congutatona Hgenvalues:  Eigenvectors:

Ay ==2 v = (0, 1)
RS G)
P = Examples == Random Az =-1 va = (-1, 2)
=] 0 D=2>0
U..'L_‘E] Then J=[_1 _2] TrJ = -3<0 tg‘a‘
(TrJ)* -4D=1>0 y

This matrix has eigenvalues A =—1,-2, as can be seen from inspection, since V) \:
the matrix is triangular. Hence the fixed point is a stable node. Trajectories ap-

proach along the eigendirection associated with A = —1 ; you can check that this di-
rection is spanned by v =(-1,2) . Figure 6.4.2 shows the phase portrait near the
fixed point (0,2}.

Figure 6.4.2

~

TrJ o e w (Trj)2_4A>0 _—).AY,A,_ reali e negativi

iy
/

NODES

0'
/ i stable nodes ¢



3 -6
(3,0): Then J = 0 —i and A =-3,~1.

This is also a stable node. The trajectories approach along the slow eigendirec-

tion spanned by v = (3,-1), as shown in Figure 6.4.3.

Eigenvalues:
D=3>0 é nes
A =-1
TrJ = -4<0 -
(TI"J)2 -4D=4>0 \:\& | Elgenvectors:
X vy = (1, 0)
Figure 6.4.3 v2=(=3,1)
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(1,I): Then J= 4 ) which has T=-2, A=-1, and A==1++2.

Hence this is a saddle point. As you can check, the phase portrait near (1,1) is as
shown in Figure 6.4.4.

¥ Eigenvalues: Elgenvectors:
D=-1<0
A = —2.41421 V= {"‘Gr l}
TrJ =-2<0
Az = 0.414214 ve = (-v2,1)

Figure 6.4.4
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Combining Figures 6.4.1-6.4.4, we get Figure 6.4.5, which already conveys a
good sense of the entire phase portrait. Furthermore, notice that the x and y axes
contain straight-line trajectories, since x =0 when x=0, and y=0 when y=0,

P2
{jzx{B—x-Zy} y \\
y=y2-x-y) ><

Figure 6.4.5

Now we use common sense to fill in the rest of the phase portrait (Figure 6.4.6).
For example, some of the trajectorics slarting near the origin must go to the stable
node on the y-axis, while others must go to the stable node on the y-axis. In be-
tween, there must be a special trajectory that can’t decide which way to turn, and
so it dives into the saddle point. This trajectory is part of the stable manifold of the
saddle, drawn with a heavy line in Figure 6.4.6.

Fa

stable
in-set, manifold




Ritratto globale nello spazio degli stati

The other branch of the stable manifold consists of a trajectory coming in “from in-
finity.” A computer-generated phase portrait (Figure 6.4.7) confirms our skeich.

: 7 B&thiﬁ

Figure 6.4.7

The phase portrait has an inter-
esting biological interpretation. It
shows that one species generally
drives the other to extinction. Tra-
jectories starting below the stable
manifold lead to eventual extinc-
tion of the sheep, while those start-
ing above lead to eventual
extinction of the rabbits. This di-

chotomy occurs in other models of
competition and has led biologists
to formulate the principle of com-

petitive exclusion, which states that two species competing for the same limited re-

source typically cannot coexist.
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Our example also illustrates some general mathematical concepts. Given an at-
tracting fixed point x *, we define its basin of attraction to be the set of initial con-
ditions x,, such that x(r) — X ™ as 1 — ==, For instance, the basin of attraction for
the node at (3,0} consists of all the points lying below the stable manifold of the
saddle. This basin is shown as the shaded region in Figure 6.4.8.

basin boundary =
siable manifold of saddle

NODE
sheep
I
2

SADDLE

1 -

REPELLOR NEEEEET T , Fhi
X rabbits
&X{‘;‘ l 2 3& st

Because the stable manifold separates the basins for the two nodes, it is called the
basin houndary. For the same reason, the two trajectories that comprise the stable
manifold are traditionally called separatrices. Basins and their boundaries are im-
portant because they partition the phase space into regions of different long-term
behavior.
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Sistema dinamico con due parametri di controllo e punti fissi con autovalori complessi coniugati

Example: The Brusselator Model
As an illustration of our techniques, let us return to the Brusselator Model given in

Eq. (3.11-1).
X =A ~(B+D)X + XY Diversamente da «Rabbits vs Sheep»,
. le equazioni del Brussellators hanno
The Brusselator Model Y =BX - XY due parametri di controllo A e B

First let us find the fixed points for this set of equations. By setting the time
derivatives equal to 0, we find that the fixed points occur at the values X,Y that
satisfy

A-(B+DX+ XY =0 (3.11-2)
BX - XY =0 (3.11-3)

We see that there is just one point (X,¥) which satisfies these equations, and the
coordinates of that fixed point are X, = A, ¥, = B/A.

iteration: &

llya Prigogine
(1917-2003)

Simulation of the Brusselator
as reaction-diffusion system in
two spatial dimensions



Sistema dinamico con due parametri di controllo e punti fissi con autovalori complessi coniugati

X=A-(B+)X + XY . The Jacobian matrix for that set of equations is
Y =BX-X'Y " 2 o
gou| O &} D=4 (3.14-7)
-B A" ] Tn=(B-1)-4°

1 punto fisso:

Xo=A, Y, = B/A Following the Jacobian determinant method outlined earlier, we find the

characteristic values:

Brussllator's phase space
50

ar /. - TrJ £+/(T1))? - 4D - i =-l—[(8-l)—A2]

' ? 21 2 (3.14-8)
i 2 2 _

) | iEJ(A -(B-1)) -44 D=1

i 1 TrJ=B-2
ol V] In the discussion of this model, it is traditional to set|A = 1|and let B be the
00 ~]  control parameter. Let us follow that tradition. We see that with E both

characteristic values have negative real parts and the fixed point is a spiral node.
This result tells us that the chemical concentrations tend toward the fixed point
values X, = A = |, Y, = B as time goes on. They oscillate, however, with the
frequency Q = |B(B—4)|x as they head toward the attractor. For|2 < B < 4,the
fixed point becomes a spiral repellor. However, our analysis cannot tell us what
happens to the trajectories as they spiral away from the fixed point. As we shall
learn in the next section, they tend to a limit cycle as shown in Fig. 1.1 in Section [

L

- (for a different model).
llya Prigogine o ~ ~ B , o
(1917-2003) Ex: A=1,B=1 2> A=1, TrJ=-1, Tr)J?-4A<0 : Spiral Node (B<2)

A=1,B=3 =2 A=1, TrJ= 1, TrJ>-4A<O0 : Spiral Repellor (2<B<4)
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Diagramma dei Punti Fissi in uno Spazio degli Stati a Due Dimensioni
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3.15 Limit Cycles

[n state spaces with two or more dimensions, it is possible to have cyclic or periodic
behavior. This very important kind of behavior is represented by closed loop
trajectories in the state space. A trajectory point on one of these loops continues to
cycle around that loop for all time. These loops are called limit cycles if the cycle is
isolated, that is if trajectories nearby either approach or are repelled from the limit
cycle. The discussion in the previous section indicated that motion on a limit cycle
in state space represents oscillatory, repeating motion of the system. The
oscillatory behavior is of crucial importance in many practical applications, ranging
from radios to brain waves.

P o I SPIRAL
(TrJ)? -4D<0 ® 1,1 ~
complessi T-7>0 Im‘ SPIRAL
coniugati 4 e Re REPELLOR -
w()= RS "’“ NASCE
x,(£) = Fe™ sinWt B B * re UN CICLO
LIMITE
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